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FOREWORD 

The U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) conducts 
Training, Leader Development, and Soldier research for the Army. Largely, the ARI mission 
involves taking proven methods in the behavioral sciences and applying them to significant 
Army problems. In addition, a smaller portion of the ARI effort involves attempts to develop 
new advanced methods to meet future Army requirements. This report describes work of the 
latter kind; an attempt was made to apply intelligent tutor technology, which has lately become 
practicable for training procedural tasks in well-defined domains, to battle command reasoning, a 
difficult cognitive task. This report describes a Phase n Small Business Innovation Research 
Program (SBIR) effort that involves developing an intelligent tutoring system for high-level 
battle command reasoning skills. Research of this nature tends to be higher risk, and this project 
was no exception. At its conclusion, ARI researchers concluded that although substantial 
advances have been made in computerized training systems during the last decade, automated 
tutoring of battle command reasoning is still beyond the current state of the technology and is not 
likely to be a feasible solution to Army training requirements in the near future. Further, it raised 
questions about whether the potential value of the future technology justifies expending Army 
resources in development efforts.  Nonetheless, the failed effort to develop a workable prototype 
had some value. It showed some of the capabilities and limitations of tutorial dialog systems. It 
advanced the methods for developing intelligent tutoring systems in domains that are 
appropriate. Further, when briefed to training developers for Future Combat Systems it provided 
them with a realistic assessment of future capabilities upon which to base their design. 

This project is part of ARI's Future Battlefield Conditions (FBC) team efforts to enhance 
Soldier preparedness through development of training and evaluation methods to meet future 
battlefield conditions. This report represents efforts for Work Package 211, Techniques and 
Tools for Command, Control, Communications, Computer, Intelligence, Surveillance, and 
Reconnaissance (C4ISR) Training of Future Brigade Combat Team Commanders and Staffs 
(FUTURETRAIN). 

Initial work in the project was presented at the 2002 Annual Meeting of 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). At the 
conclusion of the project, results were presented to representatives of the Armor School 
responsible for developing and conducting training and to the training developers for Future 
Combat Systems acquisition program. 

S'KPHEN^.JSOLDBER; 
Acting Technical Director 



VI 



A DIALOG-BASED INTELLIGENT TUTORING SYSTEM FOR PRACTICING BATTLE 
COMMAND REASONING 

EXECUTIVE SUMMARY  

Research Requirement: 

Expert thinking strategies, such as those exhibited by successful Army commanders, are 
often well understood conceptually but not applied routinely during realistic tactical problem 
solving by less experienced commanders. The goal of this effort was to develop an intelligent 
tutoring system (ITS) for interactive self-training of thinking skills, such as battle command 
reasoning, within a deliberate practice framework to promote practical application. 

Procedure: 

The approach was to couple two technologies used successfully elsewhere to address 
different aspects of the current research requirement, develop an intelligent tutoring system for 
battle command reasoning referred to here as "Automated Tutoring Environment for Command" 
(ATEC). The ATEC ITS adapted the dialog management capability from AutoTutor, a dialog- 
based tutor developed by Graesser and colleagues at the University of Memphis. It integrated 
this dialog management technology with a cognitive model-based instructional agent, a cognitive 
agent framework called iGEN by CHI Systems. The agent framework attempted to replicate the 
knowledge and role of the human mentor for such tactical instructional programs as "Think Like 
A Commander" (TLAC). 

The procedure for developing ATEC ITS included the following elements: 

• Developing a pedagogical approach, functional architecture, and software architecture for 
integrating AutoTutor dialog management capabilities into the initial iGEN-based ATEC 
system. 

• Conducting analyses on mentoring discussions in the context of TLAC vignettes and 
developing the questions and expected answers for the ATEC mentor model. 

• Evolving the initial user interface into a multi-user web environment that has a complete 
and self-contained application (with instructions and background materials). 

• Developing and integrating dialog management components into the ATEC system. 
• Enhancing iGEN to include capabilities for modeling tutorial dialog. 
• Developing a complete virtual mentor model. 
• Developing a performance assessment approach and incorporating it into the mentor 

model. 
• Developing tools to facilitate testing and refinement of the dialog mechanisms. 

vu 



Findings: 

The findings are based on the approach used to develop and refine a prototype ATEC 
system using one tactical vignette from the TLAC training program. The ATEC program was 
developed as a web-based application that users can log onto from any computer with an Internet 
connection and a browser (with Flash and Java). Introductory material was included as well as 
links to relevant documents, making it a self-contained application. The iGEN technology 
served as the reasoning engine and core computational architecture for ATEC. It handled the 
domain knowledge and reasoning facilities associated with the vignette, the student model, and 
performance assessment components. The language processor (including syntactic parser and 
speech act classifier) and statistically grounded conceptual comparison components were 
derivatives of the AutoTutor system. The curriculum script and dialog management processes of 
AutoTutor were integrated into the iGEN mentor model. 

The ATEC system was designed to present a battlefield situation and then initiate a 
dialog between a virtual mentor (instructional agent) and a student in a collaborative discussion 
of the tactical situation. As designed, the virtual mentor poses questions, evaluates student 
responses, determines the sequence of questions, and ultimately assesses performance on the 
basis of the specificity of questioning and the depth of probing and hinting that is needed to 
adequately answer the questions. The dialog is organized around the eight themes in TLAC. 
For each theme, there is a general question meant to start discussion of that aspect of the 
problem. Associated with each general question, there are anticipated good answers (called 
expectations) based on reasonable approaches to the problem posed. The virtual mentor assesses 
the student's response in relation to the possible good answers using a statistical comparison 
algorithm. There is also a set of progressively more specific questions for the virtual mentor to 
ask to prompt the student into thinking about any aspect of the theme that is not discussed in 
response to the initial question. 

A principal finding is that severe technical challenges remain in developing a 
conversation-based tutoring system to assist military personnel in acquiring and practicing 
flexible tactical reasoning strategies in realistic battle situations. The goal of using open-ended, 
non-leading questions to stimulate broad consideration of all relevant aspects of a vignette made 
it difficult to evaluate student inputs accurately, leading to unnaturalness in the tutorial dialog. 
Additional research is therefore warranted to improve the evaluation algorithm and dialog 
mechanisms. Furthermore, additional effort is needed to make the web implementation of the 
system more robust and efficient. 

Utilization of Findings: 

Overall, the results of the ATEC development effort underscore areas requiring additional 
research and development in tutorial dialog systems to fully meet the research requirement, an 
intelligent tutoring system (ITS) for higher-order thinking skills such as battle command 
reasoning. 

vm 



From the outset of this innovative research effort, there was uncertainty as to the 
feasibility of building a natural language dialog system for developing thinking skills. 
Computer-based natural language dialog systems are feasible for some classes of tutoring 
enviroimients, namely those in which domain knowledge is qualitative and the shared knowledge 
(common ground) between the tutor and learner is low to moderate rather than high. Some 
aspects of tactical thinking require high precision and that student and tutor begin with at least a 
moderate amount of shared knowledge about the situation; thus ATEC was a borderline 
candidate for tutorial dialog, and the dialog was not always appropriate to the situation. The 
most promising applications of tutorial dialog systems are to conceptual domains in which the 
goal is to impart knowledge. 

In addition, incremental changes were identified that could potentially improve ATEC. 
These include: changing or improving the tutor's conceptual pattern matching algorithm, refining 
the dialog management strategies and question hierarchy, and re-implementing the system for 
efficiency as a web application. However, it is an open question whether these changes would be 
sufficient for the type of tutoring problem addressed. 

In sum, the value of the ATEC development effort is twofold.   Lessons learned on 
technical challenges and changes required should be useful in future efforts on higher-order 
thinking skills, such as battle command reasoning. Technologies developed, including 
refinements to the tutoring architecture and underlying pedagogical approach, should readily 
apply to other training problems more amenable to conversational dialog. 
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A DIALOG-BASED INTELLIGENT TUTORING SYSTEM 
FOR PRACTICING BATTLE COMMAND REASONING 

Introduction 

The goal of this Phase II Small Business Innovative Research (SBIR^) effort w^as to 
develop an Intelligent Tutoring System (ITS) for interactive self-training of thinking skills, such 
as battle command reasoning, within a deliberate practice framework. In an attempt to achieve 
this goal, a dialog-based intelligent tutoring system was developed called "Automated Tutoring 
Environment for Command" (ATEC). This system involves the use of a dialog management 
capability based on the AutoTutor system, coupled with an iGEN-based instructional agent that 
replicates the knowledge and role of a human tutor, and a web-based personalized interface that 
manages the interaction between instructional agent and student 

The ATEC operates by first presenting a battlefield situation in a brief video on the 
ATEC interface. The system then initiates a text-based dialog between a virtual mentor 
(instructional agent) and a student as they coUaboratively discuss the situation. The virtual 
mentor (a) poses questions, (b) evaluates student responses, (c) determines the sequence of 
questions, and (d) ultimately assesses performance on the basis of the specificity of questioning 
and the depth of probing and hinting that is needed to encourage the learner to adequately answer 
the questions. The system includes various natural language processing capabilities, including 
information extraction and dialog management. 

Background 

Training Needs in Battle Command Reasoning. The Army Research Institute for the 
Behavioral and Social Sciences (ARI) has developed training and instructional materials in a 
program called "Think Like A Commander" (TLAC). The TLAC program coaches command 
reasoning through adaptive thinking exercises using battlefield situations (Ross & Lussier, 1999; 
Lussier, Ross, & Mayes, 2000). The TLAC program deals with battlefield thinking habits that 
are characteristic of expert tactical thinkers, but are often absent during realistic tactical problem 
solving of less experienced commanders even though they are imderstood conceptually at a 
theoretical level. Schoolhouse learning involves primarily declarative knowledge about 
conmiand principles and tactics, with training in task-specific procedures (in declarative form) 
based on these principles and tactics. Full-scale exercises and real command situations require 
integrated and ingrained expertise to include: determining what facts and principles are 
applicable to the problem, retrieving them, mapping the situation to the appropriate parts of the 
principles, and drawing inferences about the problem situation and its solution (e.g., VanLehn, 
1996; Zachary & Ryder, 1997). 

In essence, an inteUigent knowledgeable coach is needed who can guide the user in 
applying principles and tactics to real-world problems. At first this process is slow and effortful, 
and the principles are applied one at a time (e.g., VanLehn, 1996; Zachary & Ryder, 1997). 
However, real problem situations require coordinated application of multiple facts and 
principles. Repeated real-time practice allows for "proceduralization" and chunking of skills 

Acronyms are defined in Appendix A. 



(e.g., deriving domain-specific problem-solving strategies, integrating separate pieces of 
declarative knowledge) and development of automaticity of component skills (see Fisk & 
Rogers, 1992). It takes about 10 years to develop truly expert levels of performance and 
understanding (Ericsson, Krampe & Tesch-Romer, 1993), such as Klein's expert level of 
recognition-primed decision-making (Klein, 1989). This sophisticated expertise allow^s the 
appropriate quick interpretation and course of action to be derived directly (and almost 
instantaneously) from a recognition of key problem-instance features. As described below, 
TLAC addresses the transition from schoolhouse learning to adaptive expertise by providing 
deliberate practice opportunities. 

Think Like A Commander Program. The TLAC program has been used with Brigade 
Command designees attending the School for Command Preparation of the Command and 
General Staff College (CGSC) at Fort Leavenworth, KS (U.S. Army Research Institute, 2001). 
It is also currently used in the Armor Captain's Career Course at Fort Knox, KY (Shadrick & 
Lussier, 2002; Lussier, Shadrick & Prevou, 2003). In its current form, TLAC presents tactical 
situations (called vignettes) as short movies in a classroom setting. Following the presentation of 
a vignette, there is a classroom discussion of the vignette led by an instructor acting as tutor or 
mentor. The instructor begins by asking general questions to stimulate thinking, and then asks 
increasingly more directed questions to probe for themes that have not been addressed. The 
discussion is organized around eight themes that underlie common patterns of expert tactical 
thinking: 

1. Keep focus on mission and higher commander's intent. 
2. Model a thinking enemy. 
3. Consider effects of terrain. 
4. Use all assets available. 
5. Consider timing. 
6. See the bigger picture. 
7. Visualize the battlefield. 
8. Consider the contingencies and remain flexible. 

A set of questions or considerations are distinctly tailored to each theme. A number of TLAC 
vignettes have been developed and used across a mix of tactical sitxiations. 

Phase IATEC Approach 

In Phase I of this research, we proposed to develop an interactive practice environment 
using instructional agent technology (using CHI Systems' iGEN cognitive agent framework), an 
approach we had used successfiiUy in previous research. Our subsequent assessment indicated 
that otu- original concept of an action-based interactive practice environment would not meet the 
requirements for interactive self-training of thinking skills in the manner that would 
accommodate the TLAC program. Instead, we determmed that incorporation of a dialog 
management capability into the ATEC concept would provide the capabilities required to 
achieve the fimctionality needed. Moreover, a dialog management facility appeared to be 
technically feasible at this point in research and development, although it did push the state-of- 



the-art. We developed a revised architecture and operational concept that incorporated natural 
language processing and tutorial dialog. 

The ATEC, like the TLAC training, begins with the viewing of a vignette. After the 
vignette had been viewed, the instructional agent would conduct a dialog probing the student 
understanding of the situation and approach to handling it. A conceptual prototype was 
developed that demonstrated the planned Phase II architecture. The conceptual prototype 
incorporated an initial version of an instructional agent that focused on one theme from one 
vignette, an initial version of the user interface, and a simple placeholder for the dialog 
management capability envisioned for Phase II development. 

The instructional agent maintained a hierarchical list of questions that should be asked to 
evaluate what knowledge the student had demonstrated. Parsed student responses were analyzed 
to evaluate each specific response and to update a tree-like representation of student 
performance, which was maintained as a student model. The student model matched the 
structure of the question tree and allowed the instructional agent to monitor the student's 
responses to each particular question by populating the branch of the tree that specifically 
correlated wdth the stated question. The instructional agent also maintained a record of which 
questions were asked and which questions elicited the matching concepts to use in evaluation. In 
conducting the evaluation, the agent compared how far down the tree, or how specific and 
leading, the questions had to be asked before the student demonstrated satisfactory understanding 
of the relevant concepts. Because the dialog management capability was an addition to the 
original Phase I plan, the conceptual prototype implemented a very simple keyword-spotting 
algorithm as a placeholder for a fiill dialog management system planned for Phase II. An initial 
version of the user interface subsystem was developed in Phase I. The interface featured a 
display map panel where the vignette is displayed, control buttons to play the vignette (and/or re- 
play, zoom-in, zoom-out, stop), a 'talking head' box where narrator and mentor images appeared 
at appropriate times, dialog boxes for mentor output and student input, and buttons that allowed 
the student to link to supplementary materials. 

Phase II Research Objectives 

Building on the Phase I work, there were four research objectives for Phase II, as follows: 

1.  Develop the dialog/tutoring management system for the ATEC system. This was the key 
objective for Phase 11 since the decision to incorporate a dialog-based approach was made 
at the end of Phase I. While all other components of the ATEC architecture were at least 
partially implemented in Phase I, the dialog management approach was only approached 
in a 'placeholder' manner, using a minimal keyword-spotting algorithm. In the Phase II 
approach, the development of a suitable natural language-based dialog processor and 
manager constituted a major portion of the effort. This objective involved adaptation and 
integration of an existing and proven technology into the ATEC system called iGEN, a 
cognitive agent software toolkit developed by CHI systems. The additional technology 
was the AutoTutor system developed by Graesser and colleagues at the University of 
Memphis. 



2. Develop domain analysis tools to support semi-automated vignette authoring and 
analysis. An initial vignette was to be developed by hand and used to test and develop 
the dialog/tutoring management system. Subsequent to the initial vignette development, 
authoring tools would be developed to facilitate development of additional vignettes. 

3. Implement the instructional management subsystem, based on the instructional model 
developed in Phase I. The instructional agent approach used in Phase I needed to be 
fleshed out and integrated with the dialog management system. 

4. Develop a system to measure the students' ATECperformance. The rough concept for 
evaluating performance from Phase I had to be developed into a frill capability in 
conjunction with the instructional management system. 

Overview of this Report 

The next section of this report discusses the component technologies used in this effort, 
followed by a description of the ATEC system as it was developed. Subsequent sections 
describe the analyses conducted to support development decisions, the enhancements made to 
the iGEN agent development system to support integration of dialog management capabilities 
with instructional management, and the authoring and testing tools created to support system 
development. A final section provides an assessment of ATEC, lessons learned from the 
development effort, and an assessment of the state-of-the-art of natural language intelligent 
tutoring systems. 

Component Technologies 

Dialog-based Intelligent Tutoring Systems 

The vision of having a computer communicate with users in natural language was 
entertained shortly after the computer was invented, but it was not until Weizenbaum's (1966) 
ELIZA program that a reasonably successfiil conversation system could be explored. 
Subsequent efforts at dialog-based tutors include: 

1. CoUin's tutoring system on South American geography called SCHOLAR (Collins, 
Wamock, & Passafiume, 1975). 

2. Woods' program that syntactically parsed questions and answered user's queries about 
moonrocks (Woods, 1977). 

3. Work by Schank and his colleagues in building computer models of natural language 
understanding and rudimentary dialog about scripted activities (Lehnert & Ringle, 1982; 
Schank, 1986; Schank & Reisbeck, 1982). 

4. Winograd's SHRDLU system that interacted with a user on manipulating simple objects 
in a blocks world (Winograd, 1972). 

5. A speech recognition system that handles airline reservations, called Hear What I Mean, 
(HWIM) (Cohen, Perrault, & Allen, 1982). 

Unfortunately, two decades of exploring human-computer dialog systems had a less than 
encouraging outcome. By the mid-1980's, most researchers in artificial intelligence were 
convinced that the prospects of building good conversation systems was well beyond the 



horizon. This belief was based upon the following: (a) inherent complexities of natural 
language processing, (b) the unconstrained, open-ended nature of world knowledge, (c) the lack 
of research on lengthy threads of connected discourse, and (d) the time and expertise constraints 
in building student models. 

The early pessimism about natural language processing and conversational dialog 
systems was arguably premature. Because of a sufficient number of technical advances in the 
last eight years, researchers are revisiting the vision of building such dialog systems. The field 
of computational linguistics has recently produced an impressive array of lexicons, syntactic 
parsers, semantic interpretation modules, and dialog analyzers that are capable of rapidly 
extracting information from naturalistic text and discourse (Allen, 1995; DARPA, 1995; 
Harabagiu, Maiorano, & Pasca, 2002; Jurafsky & Martin, 2000; Maiming & Schutze, 1999; 
Voorhees, 2001). Lenat's CYC system represents a large volume of mundane world knowledge 
in symbolic forms that can be integrated with a diverse set of processing architectures (Lenat, 
1995). 

The world knowledge contained in an encyclopedia can be represented statistically in 
high dimensional spaces, such as Latent Semantic Analyses (LSA) (Foltz, Gilliam, & Kendall, 
2000; Landauer, Foltz, & Laham, 1998). An LSA space (which can be considered a kind of 
student model) can be created overnight, a space that produces semantic judgments on whether 
two text excerpts are conceptually similar. The representation and processing of connected 
discourse is much less mysterious after two decades of research in discourse processing 
(Graesser, Gemsbacher, & Goldman, 2003). There are now generic computational modules for 
building dialog facilities that attempt to track and manage the beliefs, knowledge, intentions, 
goals, and attentional states of agents in two party dialogs (Core, Moore, & Zinn, 2000; Gratch et 
al., 2002; Moore & Wiemer-Hastings, 2003; Pellom, Ward, & Pradhan, 2000; Rich & Sidner, 
1998; Rickel, Lesh, Rich, Sidner, & Gertner, 2002; Graesser, VanLehn, Rose, Jordan, & Harter, 
2001). 

Computer-based natural language dialog is particularly feasible in some classes of 
tutoring environments. First, the feasibility of tutorial dialog in natural language depends on the 
subject matter, the knowledge of the learner, and the sophistication of tutoring strategies. It is 
sometimes more feasible when the knowledge domain is qualitative (e.g., verbal reasoning, 
open-ended qualitative knowledge) rather than precise (e.g., mathematics, logic). Although 
precise domain tutors have been developed (e.g., Heffeman & Koedinger, 1998), the large 
number of computational linguistic modules available, as well as the pedagogical opportunities 
in natural language dialog, make qualitative domains often preferred (e.g., Graesser, VanLehn, 
et al., 2001). But the choice of qualitative versus precise depends on the domain. Natural 
language dialog systems would not be well suited to an eCommerce application that manages 
precise budgets, but are surprisingly good in coaching students on topics that involve verbal 
reasoning. 

Second, tutorial dialog in natural language is feasible when the shared knowledge 
(common groimd) between the tutor and learner is low to moderate rather than high. If the 
common ground is high, then both speech participants (i.e., the computer and the learner) will be 
expecting a higher level of precision of mutual understanding and therefore will have a higher 



risk of failing to meet each other's expectations. In contrast, it is entirely reasonable to build a 
natural language dialog system when the computer and tutor do not track what each other knows 
at a fine-grained level and when the computer produces dialog moves (e.g., questions, hints, 
assertions, short responses) that advance the dialog to achieve the learning goals. 

It is noteworthy that human tutors are not able to monitor the knowledge of students at a 
fine-grained level because much of what students express is vague, underspecified, ambiguous, 
fi-agmentary, and error-ridden (Fox, 1993; Shah, Evens, Michael, & Rovick, 2002; Graesser & 
Person, 1994; Graesser, Person, & Magliano, 1995). It ordinarily would not be worthwhile to 
dissect and correct each of these deficits because it is more worthwhile to help build new correct 
knowledge (Sweller & Chandler, 1994). Tutors do have an approximate sense of what a student 
knows and they do provide productive dialog moves that lead to significant learning gains in the 
student (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001; Cohen, Kulik, & Kulik, 1982; 
Graesser et al., 1995). These considerations indeed motivated the design of AutoTutor 
(Graesser, Person, Harter, & Tutoring Research Group (TRG), 2001; Graesser, VanLehn, Rose, 
Jordan & Harter, 2001; Graesser, Wiemer-Hastings, Wiemer-Hastings, Kreuz, & TRG, 1999) as 
well as the current ATEC system. In essence, dialog can be usefiil when it advances the dialog 
and learning agenda, even when the tutor does not fiiUy understand a student. To use an 
analogous dialog situation, a native speaker of English can often express utterances that help a 
visitor from another country (with broken English), even though the visitor is only approximately 
understood. 

Third, tutorial dialog in natural language is feasible when the tutoring strategies follow 
what most human tutors do rather than the strategies that are highly sophisticated. Most human 
tutors anticipate particular correct answers (called expectations) and misconceptions when they 
ask the learner's questions and trace the learner's reasoning. As the learner articulates the 
answer or solves tiie problem, this content is constantly being compared with the expectations 
and misconceptions; the tutor responds adaptively and appropriately when each expectation or 
misconception is expressed. We refer to this tutoring mechanism as expectation and 
misconception tailored (EMT) dialog (Graesser, Hu, & McNamara, in preparation). The EMT 
dialog moves of most human tutors are not particularly sophisticated fi-om the standpoint of ideal 
tutoring strategies that have been proposed in the fields of education and artificial intelligence 
(Graesser et al., 1995). 

Graesser and colleagues (Graesser & Person, 1994; Graesser et al., 1995) videotaped over 
100 hours of naturalistic tutoring, transcribed the data, classified the speech act utterances into 
discourse categories, and analyzed the rate of particular discourse patterns. These analyses 
revealed that human tutors rarely implement intelligent pedagogical techniques such as bonafide 
Socratic tutoring strategies, modeling-scaffolding-fading, reciprocal teaching, frontier learning, 
building on prerequisites, cascade learning, or diagnosis/remediation of deep misconceptions 
(Collins, Brown, & Newman, 1989; Palincsar & Brown, 1984; Sleeman & Brown, 1982). 
Instead, tutors tend to coach students in constructing explanations according to the EMT dialog 
patterns. Fortunately, the EMT dialog strategy is substantially easier to implement 
computationally than are the sophisticated tutoring strategies. 



During the last decade, researchers have developed a half dozen intelligent tutoring 
systems with dialog in natural language.   Four of these are listed below. 

1. AutoTutor and Why/AutoTutor (Graesser, Hu & McNamara, in preparation; Graesser, 
Person et al., 2001; Graesser, Wiemer-Hastings et al, 1999). This system will be 
described in the next section. It has been developed for introductory computer literacy 
and Newtonian physics. These systems scaffold college students on applying higher 
order cognitive strategies, explanations, and knowledge-based reasoning to particular 
problems. 

2. Why/Atlas (VanLehn et al., 2002). Students learn about conceptual physics by a coach 
that helps build explanations of conceptual physics problems. It has modules with 
syntactic parsers, a lexicon, semantic interpreters, symbolic reasoning modules, and finite 
state machines to manage the dialog (called knowledge construction dialogs). It also uses 
Bayesian networks, latent semantic analysis, and other statistical techniques in modules 
that perform pattern recognition and comparison operations. Why/Atlas has been tested 
in one study and has produced learning gains approximately the same as Why/AutoTutor 
and as computer-mediated commvmication vwith expert physicists with extensive 
experience in pedagogy serving as tutors. 

3. Circsim Tutor (Freedman, 1999; Hume, Michael, Rovick, & Evens, 1996; Shah, Evens, 
Michael, & Rovick, 2002). Medical students learn about the circulation system by 
interacting in natural language. The computer tutor attempts to implement strategies of 
an accomplished tutor with a medical degree. The system has a spelling checker, a 
lexicon, a syntactic parser, rudimentary semantic analyzers, and a dialog planner. There 
have been informal evaluations of learning gains, but no formal evaluation. 

4. Pedagogical Agent for Collogen (PACO) (Rickel, Lesh, Rich, Sidner, & Gertner, 2002). 
The PACO assists learners in interacting with mechanical equipment and completing 
tasks by interacting in natural language. The PACO integrates Collagen, the generic 
dialog planning system developed by Rich and Sidner (1998), with an existing intelligent 
tutoring system called Virtual Interactive ITS Development Shell (VIVIDS). There have 
been no evaluations of PACO on learning gains. 

From the above four systems that have been evaluated, two noteworthy generalizations 
can be made. The first generalization applies to dialog management. Finite state machines for 
dialog management have provided an architecture that can be applied to produce working 
systems (as in AutoTutor, Why/AutoTutor, and Why/Atlas). In contrast, there have been no full- 
fledged dialog plarmers in working systems that perform well enough to be evaluated (as in 
Circsim Tutor and PACO). Dialog planning is extremely difficult because it requires the precise 
recognition of knowledge states (goals, intentions, beliefs, knowledge) and a closed system of 
formal reasoning. Unfortunately, dialog contributions of learners are often too vague and 
underspecified to afford precise recognition of knowledge states. The second generalization 
addresses the representation of world knowledge. The LSA-based statistical representation of 
world knowledge allows the researcher to very quickly (measured in hours or days) have some 
world knowledge component up and running, whereas the symbolic representation of world 
knowledge takes years or decades to develop. AutoTutor and Why/AutoTutor routinely 
incorporates LS A in its knowledge representation so it is a tutoring system in which a new 
subject matter can be quickly developed. 



AutoTutor 

AutoTutor is a dialog-based tutor developed by Graesser and colleagues at the University 
of Memphis (Graesser, et al., in preparation; Graesser, Person et al., 2001; Graesser, Wiemer- 
Hastings et al., 1999). AutoTutor asks questions or presents problems that require approximately 
a paragraph of information (e.g., 3-7 sentences, or 50-100 words) to produce an ideal answer. Of 
course, it is possible to accommodate questions with answers that are longer or shorter; the 
paragraph span is simply the length of answers that have been implemented in AutoTutor so far, in 
an attempt to handle open-ended questions that invite qualitative reasoning in the answer. 
Although an ideal answer is approximately 3-7 sentences in length, the initial answers to these 
questions by learners are typically only 1-2 sentences in length. This is where tutorial dialog is 
particularly helpful. AutoTutor engages the learner in a mixed initiative dialog that assists the 
learner in the evolution of an improved answer that draws out more of the learner's knowledge 
that is relevant to the answer. The dialog between AutoTutor and the learner typically lasts 30- 
100 turns (i.e., the learner expresses something, then the tutor, then the learner, and so on). 

There is an important reason for using sentences as the basic metric in measuring content in 
AutoTutor. One of the goals is to have subject matter experts create the content of question- 
answer items in the curriculum script. The experts simply type in the question in EngUsh, 
followed by sentences on the ideal answer, and other specifications of content. Most subject 
matter experts are not accomplished experts in artificial intelligence or cognitive engineering so it 
is unrealistic to have them compose structured code. Sentences are a familiar unit of analysis and 
are reasonably self-contained packages of information. 

AutoTutor produces several categories of dialog moves that facilitate covering information 
that is anticipated by AutoTutor's curriculum script. AutoTutor delivers its dialog moves via an 
animated conversational agent (synthesized speech, facial expressions, gestures), whereas learners 
enter their answers via keyboard. AutoTutor provides feedback to the learner (positive, neutral, 
negative feedback),/7M/wp5' the learner for more information ("What else"), prompts the learner to 
fill in missing words, gives hints, fills in missing information vdth assertions, identifies and 
corrects bad answers, answers learners' questions, and summarizes answers. As the learner 
expresses information over many turns, the information in the 3-7 sentences is eventually covered 
and the question is answered. During the process of supplying the ideal answer, the learner 
periodically articulates misconceptions and false assertions. If these misconceptions have been 
anticipated m advance and incorporated into the program, AutoTutor provides the learner with 
information to correct the misconceptions. Therefore, as the learner expresses information over the 
tums, this information is compared to expectations and misconceptions, and AutoTutor formulates 
its dialog moves in a fashion that is sensitive to the learner input. That is, AutoTutor implements 
expectation and misconception tailored dialog (EMT dialog), which is known to be common in 
human tutors. The design of AutoTutor was also inspired by: 

1. The explanation-based constructivist theories of learning (Chi, deLeeuw, Chiu, 
LaVancher, 1994; VanLehn, Jones, & Chi, 1992). Learning is deeper when the learner 
must actively generate explanations, justifications, and fimctional procedures than when 
merely given information to read. 

2. Anderson's cognitive tutors that adaptively respond to leamer knowledge (Anderson, 
Corbett, Koedinger, & Pelletier, 1995). The tutors give immediate feedback to learner's 



actions and guide the learner on what to do next in a fashion that is sensitive to what the 
system beheves the learner knows. 

3.   Previous empirical research that has documented the collaborative constructive activities 
that routinely occur during human tutoring (Chi, Siler, Jeong, Yamauchi, & Hausmann, 
2001; Fox, 1993; Graesser 8c Person, 1994; Graesser et al., 1995). After these 
researchers analyzed videotaped or audiotaped tutoring sessions in detail, they discovered 
patterns of dialog that frequently occur and compared the incidence of these patterns to 
theoretical claims from pedagogical frameworks. 

AutoTutor uses LSA for its conceptual pattern matching algorithm when evaluating 
whether student input matches the expectations and misconceptions. The LSA is a high- 
dimensional, statistical technique that, among other things, measures the conceptual similarity of 
any two pieces of text, such as a word, sentence, paragraph, or lengthier document (Foltz, 
Gilliam, & Kendall, 2000; Kintsch, Steinhart, Stahl & LSA Research Group, 2000; Kintsch, 
1998,2001; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998). A cosine between 
the LSA vector associated with expectation E (or misconception M) and the vector associated 
with learner input (I) is calculated. An E or M is scored as covered if the match between E or M 
and the learner's text input I meets some threshold, which has varied between .40 and .65 in 
previous instantiations of AutoTutor. 

Suppose that there are four key expectations embedded within an ideal answer. 
AutoTutor expects these answers to be covered in a complete answer and will direct the dialog in 
a fashion that finesses the students to articulate these expectations (through prompts and hints). 
AutoTutor stays on topic by completing the sub-dialog that covers expectation E before starting a 
sub-dialog on another expectation. For example, suppose an expectation (The earth exerts a 
gravitational force on the sun) needs to be articulated within the answer. The following family 
of prompts is available to encourage the student to articulate particular content words in the 
expectation: 

1.   The gravitational force of the earth is exerted on the . 
2. The sun has exerted on it the gravitational force of the . 
3. What force is exerted between the sim and earth? . 
4. The earth exerts on the sun a gravitational . 

AutoTutor first considers everything the student expresses during conversation turns 1 
through N to evaluate whether expectation E is covered. If the student has failed to articulate 
one of the four content words (sun, earth, gravitational, force), AutoTutor selects the 
corresponding prompt (1, 2,3, and 4, respectively). One obvious alternative might be to simply 
have AutoTutor assert the missing information, but that would be incompatible with the 
pedagogical goal of encouraging the learner to actively construct knowledge, as discussed 
earlier.   If the student has made three assertions at a particular point in the dialog, then all 
possible combinations of assertions X, Y, and Z would be considered in the matches [i.e., cosine 
(vector E, vector I)]: X, Y, Z, XY, XZ, YZ, XYZ. The maximum cosine match score is used to 
assess whether expectation E is covered. If the match meets or exceeds threshold T, then 
expectation E is covered. If the match is less than T, then AutoTutor selects the prompt (or hint) 
that has the best chance of improving the match (that is, if the learner provides the correct answer 



to the prompt). Only explicit statements by the learner are considered when determining whether 
expectations are covered. As such, this approach is compatible with constructivist learning 
theories that emphasize the importance of the learner generating the answer. 

The conversation is finished for the question when all expectations are covered. In the 
meantime, if the student articulates information that matches any misconception, the 
misconception is corrected as a sub-dialog and then the conversation returns to finishing 
coverage of the expectations. Again, the process of covering all expectations and correcting 
misconceptions that arise normally requires a dialog of 30-100 turns (or 15-50 student turns). 

The conversational interactions between AutoTutor and the student are lengthy because 
of the pedagogical goal, expressed above, of getting the student to construct the explanation, as 
opposed to merely having AutoTutor be an information delivery system. The pedagogical goals 
could be entirely different in some learning environments. For example, an alternative 
pedagogical goal would be to efficiently cover the material by minimizing interaction time and 
number of turns. That could be easily implemented in AutoTutor by simply turning off the 
prompt and hint dialog moves in the curriculum script and having AutoTutor delivering 
assertions that fill in missing pieces of information. At the extreme, AutoTutor would simply 
present the question-answer item and not solicit information fi-om the student at all. However, 
such a system would be a standard computer-based training system rather than an intelligent 
tutoring system that adapts to the student's performance. The design of the curriculum script 
was sufficiently general to accommodate a diversity of pedagogical goals and conversational 
styles that a designer wished to implement. 

In addition to asking questions, AutoTutor attempts to handle questions posed by the 
learner. However, somewhat surprisingly, students rarely ask questions in classrooms, human 
tutoring sessions, or AutoTutor sessions (Graesser «& Person, 1994; Graesser & Olde, 2003). The 
rate of learner questions is 1 learner question per 6-7 hours in a classroom environment and 1 per 
10 minutes in tutoring. Although it is pedagogically disappointing tiiat learners ask so few 
questions, tiie good news is that this aspect of human tutor interaction makes it easier to build a 
dialog-based intelligent tutoring system such as AutoTutor. It is computationally straightforward 
to compare learner input with computer expectations through pattern matching operations. It is 
extremely difficult, if not unpossible, to interpret any arbitrary learner question fi-om scratch and 
to constinct a mental space that adequately captures what the learner has in mind. These claims 
are widely acknowledged in the computational Imguistics and natural language processing 
communities.   Therefore, what human tutors and learners do is compatible with what currentiy 
can be handled computationally within AutoTutor. 

A goal of the research was to fine-tune tiie LSA-based pattern matches between learner 
input and AutoTutor's expected input (see Hu, Cai, Graesser et al., 2003; Hu, Cai, Franceschetti 
et al., 2003; Olde, Franceschetti, Kamavat, Graesser & TRG, 2002). The good news is that LSA 
does a moderately impressive job of determining whetiier the information in learner essays 
match particular expectations associated with an ideal answer. For example, in one recent study, 
experts in physics or computer literacy were asked to make judgments concerning whether 
particular expectations were covered within learner essays. A coverage score was computed as 
the proportion of expectations in the learner essay that judges believed were covered, using 
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either stringent or lenient criteria. Similarly, LSA was used to compute the proportion of 
expectations covered, using varying thresholds of cosine values on whether information in the 
learner essay matched each expectation. Correlations between the LSA scores and the judges' 
coverage scores were approximately .50 for both conceptual physics (Olde, Franceschetti, 
Kamavat, Graesser, & TRG, 2002) and computer literacy (Graesser, Wiemer-Hastings et al., 
2000). Correlations generally increase as the length of the text increases, yielding correlations as 
high as .73 (Foltz et al., 2000). The LSA metrics also did a reasonable job tracking the coverage 
of expectations and the identification of misconceptions during the course of AutoTutor's tutorial 
dialogs. 

The question arises whether AutoTutor is successful in promoting learning gains. 
Previous versions of AutoTutor have produced gains of .4 to 1.5 sigma depending on the 
learning performance measure, the comparison condition (either pretest scores or a control 
condition in which the learner reads the textbook for an equivalent amount of time as the tutoring 
session), the subject matter, and the version of AutoTutor (Graesser, Jackson, Mathews, et al., 
2003; Graesser, Moreno, et al., 2003; Person, Graesser, Bautista, Mathews, & TRG, 2001). 
These results place previous versions of AutoTutor somewhere between an xmaccomplished 
human tutor of .4 sigma to an intelligent tutoring system of 1 sigma. Moreover, one recent 
evaluation of physics tutoring remarkably reported that the learning gains produced by 
accomplished human tutors in computer-mediated communication were equivalent to the gains 
produced by AutoTutor (Graesser, Jackson, Mathews, et al., 2003). 

AutoTutor has many other components that are needed to manage a mixed initiative 
dialog with the learner. AutoTutor attempts to handle any input that the learner types in, whether 
it is grammatical or imgrammatical. This is possible in part because of the recent advances in 
computational linguistics that have provided lexicons, corpora, syntactic parsers, shallow 
semantic interpreters, and a repository of fi-ee automated modules. AutoTutor currently manages 
a surprisingly smooth conversation with the student, even though it does not deeply analyze the 
meaning of tiie student contributions, does not build a detailed common ground, and does not 
have an intelligent symbolic planner. The dialog facilities of AutoTutor have been tuned to the 
point where bystanders cannot accurately decide whether a particular dialog move was generated 
by AutoTutor or a human tutor (Person, Graesser, & TRG, 2002). The next steps in the 
AutoTutor enterprise include blending in deeper comprehension modules, dialog planners, and 
pedagogical strategies, and determining the extent to which these sophisticated components 
improve learning gains. 

Instructional Agents in Intelligent Tutoring Systems 

The canonical ITS architecture includes, at a minimum, the following three components: 
(a) an expert module that contains a representation of the knowledge to be presented and a 
standard for evaluating student performance, (b) a student module that represents the student's 
current understanding of the domain, and (c) an instructional module that contains pedagogical 
strategies and guides the presentation of instructional material (Poison & Richardson, 1988; 
Sleeman & Brown, 1982; Wenger, 1987). These three aspects of intelligence need not be 
separate components. Current thinking is that the key to intelligent training is designing the 
system to behave intelligently by providing adaptive instruction that is sensitive to an 

11 



approximate diagnosis of the student's knowledge structures or skills (Shute & Psotka, 1995). 
Tlie indeterminacy and complexity of many domains, including battlefield reasoning, preclude 
the use of model tracing approaches to student modeling, which are only applicable to procedural 
learning and reasoning in well-structured domains. Furthermore, recent pedagogical theories 
have focused on collaborative learning, situated learning, deliberate practice, constructive 
learning, and distributed interactive simulation, all of which call for modifications of the 
traditional ITS paradigm and the creation of alternative interactive learning environments. 

A different approach has been to use cognitive modeling technology to create a model of 
an instructor that can be embedded in an interactive learning environment for the more complex, 
indeterminate domains. These models, called instructional agents, embody the reasoning of a 
human instructor and include all three aspects of tutoring intelligence in one model: domain 
knowledge, diagnostic reasoning, and pedagogical reasoning. The difficulty of diagnosing 
deficiencies in knowledge and skill or of selecting appropriate pedagogical strategies is not 
diminished using instructional agents. 

However, the problem becomes more tractable when we analyze the expertise of an 
instructor using cognitive task analysis methods, and we create an executable model of the 
tutorial knowledge that is applicable in the instructional domain. Cognitive modeling may 
provide a more natural methodology for representing human expertise than other artificial 
intelligence (AI) formalisms. 

The associated cognitive task analysis provides a richer method for acquiring that 
knowledge than other knowledge engineering techniques. CHI Systems has developed a 
cognitive agent technology called iGEN (Zachary, Ryder, Ross & Weiland, 1992; Zachary, Le 
Mentec, & Ryder, 1996) that can be used to create instructional agents. iGEN-based 
instructional agents have been used successfully in other complex domains that preclude the use 
of model tracing approaches to student modeling (Ryder, Santarelli, Scolaro, Hicinbothom, & 
Zachary, 2000; Zachary, Santarelli, Lyons, Bergondy, & Johnston, 2001). 

Integration of Component Technologies 

The iGEN technology serves as the reasoning engine and core computational architecture 
for ATEC, as described below. However, the instructional agent approach was modified for this 
application to incorporate the pedagogical approach of AutoTutor and to integrate its language 
processing mechanisms. Combining a system that models human thought and problem-solving 
and a system that excels in conversational tutoring seems ideal. 

As pointed out earlier, language processing mechanisms are particularly useful in 
qualitative domains. Battle command reasoning can be considered qualitative rather than precise 
for various reasons. First, officers moving into command positions understand the fundamentals 
of command, but have difficulties with using all the principles across a range of situations. 
Secondly, instead of learning what to think, officers are taught how to think. They will have to 
apply fundamentals to command adaptively. Finally, one of the limitations of a commander 
under stress is cognitive tuimeling: tiie inability to consider all aspects of the situation. 
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The next sections will describe how the various components have been implemented in 
the ATEC tutoring system. 

ATEC Functional Description and System Architecture 

Development Approach 

The ATEC Phase II development began with the integration of AutoTutor with the ATEC 
interface and an initial iGEN instructional agent. There was a need for a software integration of 
the technologies as well as a conceptual integration. In addition, the integrated system needed to 
address the battlefield reasoning problem, which was somewhat different from those that 
AutoTutor had addressed. 

The overall development approach began with adapted AutoTutor components, then 
migrated many of AutoTutor's functions into iGEN, and ended up with the final product having 
the controlling logic for the system within the iGEN instructional agent. As part of the 
integration, it was necessarj' to analyze AutoTutor fimctions and components and to determine 
what aspects to include and how to accomplish the integration. The rationale for these decisions 
is discussed throughout this section of the report. The integrated system is described in the 
subsection on Functional Architecture. 

Pedagogical Approach 

The ATEC system presents a battlefield situation and then initiates a dialog between a 
virtual mentor (instructional agent) and a student as they coUaboratively discuss the situation. 
The virtual mentor poses questions, evaluates student responses, determines the sequence of 
questions, and ultimately assesses performance on the basis of the specificity of questioning and 
the depth of probing and hinting that is needed to adequately answer the questions. 

Responses are not considered correct or incorrect, but rather starting points for a dialog 
about the important considerations in the vignette. In fact, there are multiple reasonable ways to 
approach the problem in any vignette, all leading to reasonable answers to a specific question. 
AutoTutor has been applied to computer literacy and conceptual physics, both of which are 
domains that require conceptual reasoning and that have one correct answer to each question or 
problem to solve. Thus, the pedagogical approach fi-om AutoTutor had to be adapted. 

The ATEC attempts to replicate the coaching and scaffolding that human 
instructors/mentors provide in the TLAC program. The ATEC is organized around the eight 
themes in TLAC. For each theme, there is a general question meant to start discussion of that 
aspect of the problem. Associated with each general question, there are anticipated good 
answers (called expectations) based on reasonable approaches to the problem posed. The virtual 
mentor assesses the student's response in relation to the possible good answers. 

There is also a set of progressively more specific questions for the virtual mentor to ask 
to prompt the student into thinking about any aspect of the theme not discussed in response to the 
initial question. This approach is based on the AutoTutor curriculum script approach, but was 
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modified to provide a mentoring style of dialog rather than the tutoring style previously used in 
AutoTutor for teaching computer literacy or physics. For example, ATEC did not include very 
specific pumps (e.g., "The mechanism in a computer that stores data between sessions is called 
the ...") as they are too leading for a mentoring dialog; or corrective splices that correct 
misconceptions in bad answers, as that would imply an incorrect answer had been given. 

User View 

The ATEC is a web-based application that users can log onto fi-om any computer with an 
Internet connection and a browser (with Flash and Java). Upon entering the ATEC system, a 
menu screen (Figure 1) is presented allowing the user to access instructions, view the Road to 
War, choose a vignette for a training session, or end the training session. 

The instructions provide an explanation of ATEC and TLAC and describe the process for 
using the system. The Road to War button brings up a Flash movie containing the background 
situating information for all the vignettes. 

In order to focus on the design issues, we have used one vignette. Vignette 5, as our 
example. When a vignette is selected, the main vignette interaction screen appears (Figure 2). 
This is the main screen for viewing the vignettes, interacting with the tutor, and accessing 
supplementary materials. The components of the main vignette interaction screen are described 
below. The numbers correspond to the labels in Figure 2. 

Figure 1. Menu screen. 
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Figure 2. Vignette interaction screen. 

1. This is the speaker identification area, which displays a picture of the person speaking 
and his position. 

2. This is the main information display area. Flash movies ofthe Road to War and 
Vignettes are displayed here. Supplementary information is also displayed in this area 
(see Figure 3). There are four VCR-like controls associated with this box to allow the 
user to control the presentation ofthe Road to War and Vignette: PLAY, PAUSE, RE- 
START, and END. 

• PLAY and PAUSE are used together to pause the presentation at any time and to 
resume playing it from where it was paused. 

• RE-START re-starts the presentation from the beginning. 
• END jumps to the last segment of the presentation. 

3. This area is the virtual mentor interaction area. All dialog is conducted using this area. 
The top box contains the running dialog between the mentor and the user. Mentor dialog 
comes up here. The bottom box is for user input. Once the user is satisfied with his or 
her input and presses the ENTER key on the keyboard, the input becomes part ofthe 
ruiming dialog in the top box. 
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This control area provides buttons for controlling the session and accessing 
supplementary information. There are six buttons: EIGHT THEMES, ORDERS, ROAD 
TO WAR, VIEW MAP, DOWNLOAD DOCS, and EXIT. 

• EIGHT THEMES brings up the eight themes that have been indicated by the Army 
Research Institute as representing necessary components of expert patterns of 
battlefield thinking. 

• ORDERS brings up a list of the relevant orders that can be view^ed. Selection of an 
order causes the order to appear in a new window. 

• ROAD TO WAR allows the user to review the Road to War while responding to 
Mentor questions. 

• VIEW MAP returns the vignette map display after viewing any other information. 
• DOWNLOAD DOCS provides a list of documents (i.e., field manuals) available for 

downloading. Selection of a document causes it to appear in a new window. 
• EXIT exits the current vignette session and returns to the menu screen. 
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Figure 3. Supplementary information display. 

Functional Architecture 

Figure 4 shows the functional architecture of the ATEC system, indicating which 
components are handled by AutoTutor components, iGEN components, or Flash/Java 
components. The user interface components are implemented as Flash and Java. The language 
processor (including syntactic parser and speech act classifier) and statistical comparison 
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components are derivatives of the AutoTutor system, whereas iGEN handles the domain 
knowledge and reasoning facilities associated with each vignette, the student model, and 
performance assessment components. In addition, the curriculum script and dialog management 
processes of AutoTutor have been integrated into the iGEN virtual mentor. 

The Language Processor parses the student input, classifies it into speech act categories, 
and passes a parsed and tagged representation of the student input to the Student Input 
Evaluation process within the Virtual Mentor. The Virtual Mentor (instructional agent): (a) 
controls and maintains the list of questions that should be asked (functionally a Curriculum 
Script), (b) evaluates what knowledge the student has demonstrated (Student Input Evaluation), 
and (c) maintains a representation of the student's discussion of vignette aspects (Student 
Model). Frozen expressions (e.g., "I don't understand," "Could you repeat that?") are handled 
directly by the Dialog Management processes, while contributions and questions are handled by 
the Student Input Evaluation processes. The system is designed to incorporate a hybrid approach 
for evaluating student inputs. One type of evaluation uses statistical techniques (Statistical 
Comparison) for comparing the student input to the expected good answer(s). The second 
method for evaluating student input involves deep reasoning based on domain knowledge. 
ATEC does not currently have any deep reasoning logic implemented. 
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Dialog Management processes handle the microstructure of the tutorial dialog by specifying 
discourse markers, dialog moves, and responses to frozen expressions, as well as the logic for 
constructing dialog moves that are responsive to the student input and its evaluation. 

Virtual Mentor 

The Virtual Mentor (VM) provides the instructional reasoning of ATEC. As described 
above, it controls and maintains the list of questions that should be asked, evaluates what 
knowledge the student has demonstrated, and maintains a representation of the student's 
discussion of vignette aspects. It is implemented as an iGEN model, using extensions to iGEN 
that were developed to handle dialog (see section on iGEN Enhancements for Dialog and 
Performance Assessment below). Functionally, it incorporates the Curriculum Script and Dialog 
Management of AutoTutor as part of its instructional reasoning. 

The main components of an iGEN model are: a problem representation blackboard 
containing declarative knowledge about the situation (including a metacognitive blackboard 
representing about the status of cognitive processing), procedural knowledge represented as 
tasks, and mechanisms for sensing the external environment (perceptual demons) and acting on it 
(actions). A communication shell allows the model to obtain perceptual inputs from the 
environment (in this case, student inputs parsed and classified into speech act categories), define 
actions on the external environment (in this case, mentor outputs), and invoke fimctions from 
external modules as part of its task procedures (in this case, the statistical comparator). 

The VM contains tasks for asking questions related to each TLAC theme. Each task 
includes one or more dialog chunks—a hierarchy of questions and associated expectations 
(possible good answer aspects). Each dialog chunk has a leading question, any number of nested 
subquestions (more specific questions) and expected good answers (expectations) associated 
with questions. It is also associated with a theme. Whenever the VM asks a question and the 
student provides a response (contribution), the VM compares the contribution to all expectations 
to the question asked and to all subquestions. Any expectations that are satisfied are marked. 
Subquestions are not asked if their expectations have already been satisfied. Botii tiie questions 
and the associated expectations are combined conjunctively or disjunctively, resuhing in various 
types of AND/OR trees. This approach allowed tiie VM to use tiie mentoring style of TLAC, 
starting with general questions and only asking specific ones for topics the student did not 
discuss. These tasks comprise the Curriculum Script component of the VM. 

In addition to the tasks for asking questions, there were tasks for managing local aspects 
of the dialog, including special speech acts (questions and frozen expressions), acknowledging 
good answers, and providing other discourse markers as needed to make the conversation smooth 
(see Louwerse & Mitchell, 2003; Louwerse, Graesser, Olney, & TRG, 2002). Discourse markers 
are defined and stored in a specific level of the blackboard called "Markers" which contains one 
sub-level for each type of marker. The tasks using the markers randomly select one marker from 
the needed category to make the conversation less rigid. These tasks along with the dialog 
processing mechanisms buih into iGEN comprise the Dialog Management components of the 
VM. 
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The VM starts the execution of its highest priority tasks (a task with questions about one 
theme). The execution of the first dialog chunk sends the text of the leading question to the 
dialog interface window, and prepares a set of expected answers. The execution of the task is 
put in a suspension mode until the dialog interface window receives an answer from the user. 
When an answer is received, it is parsed and classified by the speech act classifier, which may 
also identify a set of key nouns that can be extracted fi-om the answer (to aid in question 
answering). The answer is then posted in the metacognitive blackboard, along with its 
classification and attached nouns. If the classification corresponds to a special speech act, the 
task for handling special speech acts is triggered. If the speech act is not special and satisfies at 
least one of the expectations, then a task is triggered and executed which provides dialog 
transition markers for acknowledging success. This task initiates an acknowledgment marker 
(e.g., "ok"), and if more answers to the same question are still expected, it also initiates a next 
marker (e.g., "anything else"). Once the interrupting task (if ever triggered) is completed, the 
normal execution of the original task continues. Depending on the status of the question that was 
previously asked, the execution may continue by asking subquestions to this question or continue 
the normal execution of the task. Once a task is completed, the task with the next priority begins 
(usually a task related to another theme). 

The task for handling special speech acts has sub-goals for answering definition and 
yes/no questions, avoiding questions it cannot answer (e.g., saying "That is a good question. 
What do you think?"), and responding to fi-ozen expressions indicating lack of knowledge or lack 
of understanding. 

Dialog Management and Curriculum Script 

Dialog management can be viewed fi-om the standpoint of macrostructure and 
microstructure. Macrostructure consists of major chunks of lessons to be covered and the points 
to be covered within each lesson. Microstructure consists of ATEC's dialog moves and micro- 
adaptation to the student during the course covering each point. The curriculum script plays the 
primary role in managing the macrostructure whereas a more complex dialog management 
mechanism is needed for handling microstructure. 

The analyses conducted to determine the content for the curriculum script at the 
macrostructure level are described in the DomainA^ignette Analyses subsection of the Analyses 
Conducted section of this report. Although the topics included those related to multiple ways to 
approach the problem presents, there was no guarantee that all possible approaches any student 
might want to discuss were included. The development of the microstructure (i.e., specific 
subquestions) was determined by an analytical process of partitioning the content into smaller 
units for subquestions. 

As discussed previously, the curriculum script consists of a hierarchical organization of 
themes, general and specific questions associated with themes, and expectations associated with 
each question. This can be expressed in the following simple rewrite rules, with * signifying 
there can be one or more of the designated constituents. 
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Curriculum Script -> Themei + Theme2 + ... Themeg 
Themcn -> Theme-description + Question-answer-structure* 
Theme-description -> <verbal description that summarizes the theme> 
Question-answer-structure -> General-question + General-expectation + 

Specific-subquestioHi + Specific-sub-expectation; 
Specific-subquestioni -> <verbal articulation of a question> 
Specific-subquestionj -> Specific-subquestiouj + Specific-subquestionk 
Specific-subexpectationi -^ <verbal articulation of a subexpectation> 
Specific-subexpectatioui -> Specific-subexpectationj + Specific-subexpectationk 
General-question -> <verbal articulation of a general question> 
General-expectationi -> <verbal articulation of a general expectation> 

The dialog macrostructure is organized around the eight TLAC themes. The themes are 
currently introduced in a fixed order. The questions within a theme are asked in an ordering that 
goes from general to specific following the nested structure; if the student articulates an 
expectation at a higher level, then all nested subordinate questions need not be asked. If the 
content of the user contributions has a very low match to the expectations, then the same 
sequence of questions would be produced for a theme, following a progressive deepening 
algorithm. If the content of the user contributions has a high match to the expectations, then 
many of the questions can be deleted so there is fluctuation in questions asked, depending on 
what the user articulates. 

For example, a portion of the curriculum script dealing with the theme 'Mission' is 
shown in Figure 5 in text format extracted from the iGEN mentor model. There is one leading 
question, Q2, with four subquestions, some of which have their own subquestions. The 
associated expectations have corresponding numbers beginning with 'E' and are either 
disjunctive or conjunctive combinations. For a disjunctive set of expectations, only one must be 
satisfied for the question to be satisfied; while for a conjimctive set, all must be satisfied. 

The dialog microstructure attempts to micro-adapt to a variety of potential student 
contributions during the process of attempting to have expectations covered. The ATEC handles 
some questions that users ask. In particular, it can potentially answer definitional questions 
(What does X mean?) and verification questions (Is X true?). Definitional questions are 
answered by consulting a glossary. If X is an entry in the glossary, tiien the meaning of X is 
produced and then ATEC returns to the same point in the dialog prior to the user question. If X 
is not an entry in the glossary, then ATEC aimounces that it cannot answer the question and goes 
on in the dialog as it normally would. The ATEC also responds appropriately to a variety of 
frozen expressions that users often type in. 

For example, a metacognitive expression is "I don't follow" whereas a 
metacommunicative expression is "Could you say that again?" The ATEC attempts to respond 
appropriately to a large set of alternative speech acts that the user might enter. ATEC also adds 
dialog markers to its responses to improve the smootiiness of the dialog. For example, it 
acknowledges user input v^th an Acknowledgement Marker chosen randomly from a set 
including 'Alright,' 'Good,' 'Okay,' 'Right' prior to proceeding witii another question. There 
are also sets of markers for requesting fiirther information when a response partially satisfies a 
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question, markers for responding when the user input is not relevant to the question, among other 
things. An example of dialog corresponding to the curriculum script chunk in Figure 5 is shown 
in Figure 6. Appendix B shows the annotated log corresponding to this example dialog. 

Language Processing Components 

Most of the language processing components in ATEC are based on those used in 
AutoTutor. They include speech act classifier, syntactic parsers, and statistical comparison of 
text strings for evaluating conceptual similarity. Each is discussed in turn. 

Speech Act Classifier. An important function in ATEC is that of speech act 
classification. As with AutoTutor, ATEC needs to determine student intent in order to flexibly 
respond to the student.   A speaker who asks "can you repeat this" would probably not like to 
have a "yes" or "no" as a response, but would in fact like to have the previous utterance repeated. 

The ATEC uses speech act classification in order to determine the student's intentions. 
This classification system is based upon the AutoTutor classifier that identifies 20 illocutionary 
categories. These categories range fi-om assertions to metacommunicative and metacognitive 
expressions like "Can you repeat that?" and "I don't know" to 17 questions categories, as 
proposed by Graesser, Person and Huber (1992). The classifier uses a combination of syntactic 
templates and keywords. Syntactic tagging is provided by the Apple Pie Parser (APP) (Sekine & 
Grishman, 1995) together with cascaded finite state transducers. 
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Q2: What is the plan to achieve higher command's main objective? 
Q 2.1: What Is your mission? 

Q 2.1.1: What is your objective? 
[E2.1.1. (Objective Sword \ Sword \ The crossing sites over Stranger Creek)]. 
Q 2.1.2: What is your planned scheme of maneuver? 
[E2.1.2a.  To infiltrate the security zone, attack and seize (Objective Sword | Sword | 
the crossing sites over Stranger Creel<) 

OR 
E2.1.2b. Conduct an infiltration and attack to seize (Objective Sword | Sword \ the 
crossing   sites over Stranger Creek). 

OR 
E2.1.2c. (I\we\ 2"" Bde | 2"" Brigade \ Bde | Brigade \ 2"" Bde Commander) will 
infiltrate, attack and seize (Objective Sword | Sword | the crossing sites over Stranger 
Creek).] 
Q 2.1.3: What is the planned end-stated of your mission? 
[E2.1.3a. Passages lanes are open for 25 AD attack. 

OR 
E2.1.3b. Seize (Objective Sword | Sword \ crossing sites over Stranger Creek) to 
allow 25AD freedom of movement to PL Dime. 

OR 
E2.1.3c. Help 25 AD to move unhindered by enemy direct and unobserved indirect 
fires from PL Arkansas to PL Dime] 

Q 2.2: What are the key tasks you must accomplish to succeed in your mission? 
[E2.2a (Create an assailable flank \ create and exploit an assailable flank) 

AND 
E2.2b (Penetrate and destroy the security zone. | Destroy the enemy security zone.) 

AND 
E2.2C (Support the destruction of the security zone combined arms reserve | destroy the 

security arms reserve) 
AND 

E2.2d (Deceive the enemy | deceiving the enemy as to the main attack | deceive the enemy 
as to the location of the main attack.) 

AND 
E2.2e (Clear passage lanes for the 25'" Armor \ Clear the passage lanes to give 25th 
Armored Division freedom of movement from Phase Line Arkansas to Phase Line Dime.) 

AND 
E2.2f Cover the passage of the 2^" Armored Division at EENT.] 
Q 2.3: How is the infiltration being conducted? 

Q 2.3.1: Who is conducting the infiltration? 
[E2.3.1 6-502 Air Assault Infantry will conduct the infiltration.] 
Q 2.3.2: When will the infiltration occur? 
[E2.3.2 (During the hours of darkness \ At night.)] 

Q 2.4: What are the objectives of the infiltration? 
{E2.4a 6-502 will attack and seize (Objective Meade | Meade) to threaten the enemy's 
eastern flank 

AND 
E2.4b (Seizing (Objective li/Jeade \ Meade) will also protect 2nd Brigade's eastern flank. \ 
Protect the Bde's eastern flank | Protect my flank.) 

AND 
E2.4C (Seize | capture) (Objective Meade | crossing sites) to facilitate the (mounted attacks 

of the 4-25 and 4-81 \ mounted attacks)] 

Figure 5. Example extract from curriculum script. 
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C What is the plan to achieve higher command's main objective? 
U seize objs meade, hill, grant, and lee 
C Lets discuss something more specific. 
C What are the key tasks you must accomplish to succeed in your mission? 
U identify or create an assailable enemy flank; destroy the CAR; seize key terrain along PL 

Dime; destroy enemy forces along passage lanes 
C Okay, 
C Can you add to that? 
U those are the key tasks 
C What are the objectives of the infiltration? 
U force the enemy to withdraw 
C What is your mission? 
C Okay, 
C Anything else? 
U we will commence nit 210530may 
C Lets discuss something more specific. 
C What is your planned scheme of maneuver? 
U lead with a mech tf; then follow on with a mech and armor tf; w/ a mech tf in reserve 
C How is the infiltration being conducted? 
U the lead tf will conduct an air assault to establish contact with the main body following on 
C Lets discuss something more specific. 
C Who is conducting the infiltration? 
Utf 6-502 
C When will the infiltration occur? 
U 6-502 will LD at 202100may 

Figure 6. Example session dialog extract. 

The finite state transducers consist of a keyword transducer (e.g., difference and 
comparison in the comparison question category) and syntactic templates. Extensive testing of 
the classifier showed that the accuracy of the classifier was better than 65% overall and as high 
as 87% for certain question categories, thereby similar to human performance (see Louwerse, et 
al., 2002; Olney et al., 2003). The ATEC responds to student contributions (assertions), frozen 
expressions (metacommunicative and metacognitive expressions), and three question categories 
(concept completion, definition, and yes/no). All other questions are handled by discourse 
markers indicating the VM does not know the answer. The speech-act-category tagged student 
input is used by the VM. 

Glossary. Another component is a glossary used to answer certain types of questions. 
There is a glossary of terms and definitions that are used in the battle command reasoning. 
Whenever a learner asks a definitional or concept completion question ("What does X mean?"), 
then the glossary is consulted and a definition is produced for an entry in the glossary. 

Syntactic Parsers. Syntactic parsing is needed in ATEC to provide the input for speech 
act classification, as discussed above, and for answering questions. Because parsers differ in 
their characteristics and output format, as well as the operating system they run imder, different 
parsers may be needed for different purposes. In addition to the Apple Pie Parser used by the 
speech act classifier, ATEC uses the SCOL parser in conjimction with the glossary. Both these 
parsers are relatively fast, fi-eely available, and commonly used (Louwerse et al., 2002). 
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The Apple Pie Parser (APP) currently has three versions, with one more in the works. 
These versions run on different systems including Linux, Windows NT, and Solaris, depending 
upon which version is used. The APP is a bottom-up probabilistic chart parser that looks for the 
parse tree with the best score by a best-first search algorithm. The output consists of codes that 
tag the words, phrases, clauses, and sentences; and brackets that divide the text into phrases, 
clauses, etc., appropriately (that is, a syntactic tree v^th bracketing is generated). The APP tries 
to make a parse tree as accurately as possible for reasonable well-formed sentences (e.g., 
sentences in newspapers or well-written documents). It is not designed to parse many ill-formed, 
but still seemingly reasonable, sentences, as for example those found in typical conversation. 

The SCOL parser (Abney, 1996, 1997) is written for UNIX or LINUX systems. It 
generates parses and the corresponding parse trees. Parses tend to be rather long since the 
system is more fragment-oriented and less grammar-oriented than the APP. The parser does not 
necessarily generate a complete parse for a particular sentence, so you can end up with multiple 
parse trees in one of your files of parsed results. The SCOL is not focused on identifying 
complete grammatical parses of a sentence. It is only interested in identifying phrases and 
fragments like noun phrases and prepositional phrases. The SCOL parser uses 'nx' to identify 
structures it thinks of as noun phrases, and 'pp' for prepositional phrases. While for some 
purpose, it is a drawback of the system that it is very 'noun' oriented, i.e., words that cannot be 
classified are automatically classified as nouns, this is a benefit for input to a glossary used for 
answering questions as only nouns are tagged. 

Statistical Comparison. The statistical comparison component is a pattern matching 
component comparing the student's contribution v^th a set of possible expected answers. Take, 
for instance, the following tutor and student turn and the expected answer. 

■ Virtual Mentor: "What does the enemy know about you?" 
■ Student Contribution: "The enemy knows nothing." 
■ Expected answer: "It is likely the enemy does not know 2"'' Bde's intent and plans at this 

time." 

The degree of similarity is computed, and if the similarity is greater than a selected 
threshold value (currentiy set to .5) tiie input is determined to match the expected response. In 
ATEC, multiple similarity values are computed - any given student contribution is compared to 
all expectations to tiie question asked (each unitary component of the answer is considered a 
separate expectation) and to all expectations associated with all subquestions in the question 
hierarchy. The match value for all expectations is posted on tiie metacognitive blackboard for 
the iGEN model to use in its evaluation of student performance and for dialog management. 

The ATEC used the Inverse Document Frequency (IDF) algorithm that is quite sunilar to 
the algoritiim that Graesser, Hu, Person, Jackson, Steward, and Totii (2002) had successfully 
used in the past in the context of query-based mformation. The IDF is an extended weighted 
keyword matching algorithm. That is, tiie comparison assigns weights by the inverse of the 
fi-equency of the words in a corpus representing the domain. Since tiie less frequent words are 
usually the more important in terms of information conveyed, a student input containing many of 
the important content words in tiie expected answer will be given a high similarity value, and if 
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greater than the threshold set, will be considered as a good answer to the question. The 
algorithm can be extended to include using domain-specific synonyms in addition to using the 
actual words in the expectation (e.g., Division Commander and Commanding General). 

For any given corpus, IDF can be obtained for each word as follows: The corpus is 
processed so that each word is reduced to its stem form. For example, attacking, attacked, all are 
reduced to ATTACK. Then the fraction (N/ni) is taken, where N is the number of paragraphs in 
the corpus and ni is the number of documents in which the word 'i' occurs. The IDF of each 
term is used as the weight of that word in the given corpus. IDF for any set of words is the sum 
of the IDF for each individual word in the set. To calculate the similarity, the following 
procedure is used: Assume that Si is the set of words in the user input and S2 is the set of words 
in the expectation against which the user input is compared. 

1. Si082 contains words that are present both in Si and S2 
2. Similarity between Si and S2 is computed using the following formula: 

For the example question and answer earlier in this section, 

■ Si= {"the," "enemy," "know," "nothing"} 
■ S2={"It," "is," "likely," "the," "enemy," "do," "not," "know," "2"'* Bde," "intent," 

"and," "plan," "at," "this," "time"}. The join of Sj and S2, (81082)= {"the," 
"enemy," "know"}. 

For each individual word, IDF is obtained, then the similarity between 81 and 82 is computed as 
in (1), where 

■ IDF(SinS2)=IDF("the")+IDF("enemy")+IDF("know") 
■ IDF(S2)= IDF("it")+IDF("is")+IDF("likely")+ 

IDF("the")+IDF("enemy")+IDF("do")+IDF("not")+IDF("know")+IDF("2'"*Bde")+ 
IDF("intent")+IDF("and")+IDF("plan")+IDF("at")+IDF("this")+IDF("time"). 

The value of the similarity computed is compared with a threshold. If the value exceeds the 
threshold, then the expectation is considered met. 

Alternative methods of statistical comparison and the evaluation conducted to select IDF 
are provided in the section below on Analysis of Statistical Methods for Input Evaluation. 

Performance Assessment 

The goal of performance assessment in ATEC is to evaluate the student's critical thinking 
skills. Since the system is dialog-based and there are no correct or incorrect answers, the goal of 
the training is to be able to consider all relevant information within the eight themes. Our 
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approach to assessment is based on the depth of questioning needed in each aspect of each of the 
eight patterns of expert thinking (themes). Performance is considered better if the student 
generates a response to a high-level question that incorporates all information relevant to that 
theme. Performance is deemed poorer to the extent that additional, more specific questions and 
prompts are needed to elicit responses incorporating the additional relevant information. 
Following this logic, a student who presents a thorough response to the vignette, a response that 
touches upon the relevant information with a few probe questions, would be assessed higher than 
a student who provides the same amount of information but requires more extensive probing or 
prompting. Scores are calculated for each theme and for overall performance (average of the 
theme scores). 

Automatic performance assessment calculation. A score will be calculated for each 
dialog chunk (leading question), ranging from 0 to 1, with 1 indicating all expectations satisfied 
when only the leading question has been asked, and 0 indicating no expectations satisfied and all 
subquestions asked. (If a line of questioning is not productive, not all subquestions may be asked 
even if no expectations are satisfied. In those cases the score will be 0.) If a partial answer is 
given, and the VM asks "Anything more?" that will not be counted as another question, since no 
further information is given. Intermediate scores are calculated as follows: 

1. The score is aggregated at each level of the question hierarchy. For x first-level AND 
subquestions, each subquestion contributes 1/x of the dialog chunk score. 

2. If a question or subquestion is not fully answered, that 1/x of the dialog chunk score is 
calculated based on the next-level subquestions. If there are y AND subquestions, each 
contributes 1/y of the 1/x contribution yielding 1/xy of the total score. 

3. At any further sub-level, the contribution to the total score is again partitioned based on 
the number of subquestions at the next lower level. 

4. If the subquestions at any level are OR questions, full credit is given if all expectations 
within any part of the disjunction are satisfied. If no part is fully satisfied, then the 
maximum partial score is used. 

5. At the terminal level of subquestions, if all expectations are satisfied, full credit is given. 
However, partial credit is given based on the proportion of expectations satisfied, with 
OR expectations calculated similarly to OR questions. 

6. The score at each level is weighted, with the score discounted by the depth attenuation 
factor. In other words, less credit is given as lower levels of subquestions need to be 
asked. 

7. The default depth attenuation factor has been set at .75 yielding the following weights: 
1^' level subquestion - .75 
2""* level subquestion - .75 (.75) - .563 
3''^ level subquestion - .75 (.75) (.75) = . 422 
4* level subquestion - .75 (.75) (.75) (.75) = . 316 
etc. 

If all subquestions (to whatever depth the question hierarchy includes) are asked and no 
expectations are satisfied, the score for that dialog chunk is 0. 
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The depth attenuation weights are set at initialization, so they can be easily modified. 

Examples of question hierarchies and scores (using color coding key below) are provided in 
Figure 7. 

o o Asked - Satisfied    f      ^ Asked-Not 
when asked V y  Satisfied wlien asked o Not asked 

Example 1 
Leading Question 

level 1 subquestions (.75) 

j 2 ) level 2 subquestions (.56) 

level 3 subquestions (.42) 

[.75]+ [.75]+ [.75] /3 = .75 
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Example 2 
Leading Question 

level 1 subquestions (.75) 

level 2 subquestions (.56) 

level 3 subquestions (.42) 

[ .75] + [ .75] + [(.42 + 0) /2] /3 = .57 

Examples 
Leading Question 

level 1 subquestions (.75) 

3 2) level 2 subquestions (.56) 

level 3 subquestions (.42) 

[(.56)] + [(.75)] + [ (.42 + 0)/2)] /3 = .51 
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Example 4 

Leading Question 

level 1 subquestions (.75) 

level 2 subquestions (.56) 

level 3 subquestions (.42) 

[ .56] + [(.56 + .42) /2] + [(.42 + 0) /2] /3 = .42 

Figure 7. Four examples of performance assessment calculations. 

Performance Assessment Summarization in the Model. The dialog-chunk scores will be 
aggregated to yield theme scores and overall scores. The theme score will be the average of all 
associated dialog chunks. Similarly, the overall score will be the average of the theme scores. A 
graphic summary is shown in Figure 8. 
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Figure 8. Screen layout for performance assessment summary. 

Software Architecture 

The ATEC software architecture uses a distributed design to allow multiple simultaneous 
users to access the system over the Internet. This design consists of the following components 
(from right to left in Figure 9) the: (a) client side of the system, (b) the web server, (c) iGEN 
components, and (d) langviage components. The student accesses the system through a web 
browser (currently only Microsoft Intemet Explorer is supported). An Apache Web Server is 
used to serve the ATEC website and Flash animations to each Student Client. Although not 
implemented (as indicated by gray), the design allows for a Student Client to log student 
performance and maintain a persistent student profile between sessions. The iGEN components 
are served by a python Session Manager that initiates an instance of the Blackboard Architecture 
for Task-Oriented Networking (BATON) engine of iGEN for each user logging onto the system. 
A python Dialog Web Server accepts student dialog inputs and sends them to the appropriate 
iGEN instance. A Simple Object Access Protocol (SOAP) client initiates the needed language 
modules for each iGEN instance. The language modules are implemented as web services using 
AXIS (Apache). Once the web service is initiated it takes the text passed from iGEN and calls 
the needed language service—^the language module incorporating the speech act classifier (which 
calls the parser) or the statistical comparison logic using the MySQL Database (which contains 
the matrices for the statistical comparison). The web server and iGEN components run under 
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Windows and are currently hosted on one processor. The language components run under Linux 
and are hosted on another processor. 
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Figure 9. Software architecture. 

Summary of A TEC Description 

In summary, this section described the ATEC system. First, it described how the system 
design evolved fi-om the component technologies of iGEN and AutoTutor and the overall 
pedagogical approach. It then provided a description of the system from the point of view of a 
user, showing the user interface. From the user view, the description moved into the system 
functions and components, describing the functional architecture first, followed by component 
descriptions, including the virtual mentor, the approach to dialog management and the 
curriculum script, the language processing components, and the approach to performance 
assessment for student modeling. The final subsection provided tiie software architecture. 

The next section provides details on the analyses conducted to make system design 
decisions. It also includes discussion of research conducted to enhance ATEC or similar dialog- 
based tutoring systems in the future. 

Analyses Conducted 

Initial Data Collection 

An initial data collection trip was undertaken at Fort Hood, Texas, from 1-4 April 2002. 
There were three goals for this data collection trip: 

•   Validate and extend the set of questions and expected good student responses for the 
initial vignette selected for development (Vignette 5), 
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Determine how people refer to spatial locations - both verbally and using pointing in 
order to determine whether to incorporate a mechanism for allowing students to point to 
the situation display using the mouse rather than having to say/type location information, 
and, 
Determine whether there was any difference in communication content or amount when 
speaking versus typing. 

I St Participants were three First Lieutenants, five Captains, and five Majors from the T 
Cavalry and 4*'' Infantry Divisions at Fort Hood. After being briefed about the purposes of the 
research effort, participants were provided hard copies of background information, including the 
"The Road to War" and supporting orders. After reading these documents, the participants 
viewed an electronic presentation of a TLAC vignette. The participants responded to this 
vignette by: (a) typing responses to 24 questions from the curriculum script (three participants), 
(b) providing verbal responses to the 24 questions (four participants), or (c) working in pairs to 
develop a verbal summary of intended actions (six participants). In the conversation only 
sessions, we provided printed schematic maps similar to those used in TLAC (roughly 1:50,000 
scale but with less detail) to see if and how spatial references are made via pointing. At the end 
of each session the participant was debriefed and asked to provide feedback on the Road to War 
materials, the vignette presentation, the questions asked during the data collection and anything 
else related to the session. The less experienced officers (the three First Lieutenants and four 
Captains) were assigned to conditions (a) and (b) which addressed communication content and 
amount when speaking versus typing and spatial reference, and the more experienced officers 
(the five Majors and one Captain) were used in condition (c), to validate the curriculum script. 

Feedback from the participants on the "Road to War" and Vignette 5 presentation was 
very constructive and provided inputs for improvements. The data collection provided the 
following findings: 

• It was observed that the officers would perform the amount of typing required to 
make the ATEC system effective. 

• Feedback from the participants on the "Road to War" and Vignette 5 presentation was 
very constructive and provided inputs for improvements. These improvements 
included elimination of information that was unimportant to the participants and 
implementation of "Road to War"A^ignette presentation suggestions. This feedback 
also allowed us to expand the user responses in the curriculum script and restructure 
or eliminate poor, ambiguous questions. 

• It was observed that a better presentation of the background information was needed, 
as participants tended to spend between 30 and 45 minutes going over them. It was 
determined that this information should be presented electronically. 

• Spatial references were most frequently linguistic indicating that the need to include 
mouse pointing was not needed. 

• Although we were able to obtain good data from the pool of participants available, it 
became clear that higher grade level participants. Lieutenant Colonel and above, 
would be needed to obtain a better validation/expansion of the curriculum script 
content. 
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•    An issue arose in wliich the participants wanted to see the system use the real maps 
they are most famihar with (i.e., 1:50,000 to 1:250,000 scale maps). After 
discussions about this issue with ARI, we determined that the TLAC-like maps were 
sufficient for Phase II and its focus on brigade level operations. 

Domain/Vignette Analyses 

Development of the curriculum script began with an analysis of the vignettes and 
supporting materials created by the ARI, Fort Leavenworth, KS and Fort Knox, KY. To provide 
as extensive coverage of expectations as possible, the analysis was conducted in three phases on 
two of the vignettes. The first phase of the analysis was done with an in-house Subject Matter 
Expert (SME) to develop an initial assessment of the vignettes based on the eight TLAC themes. 
This SME was a Captain in the Army with extensive experience working as a Battalion and 
Brigade level staff officer.   This assessment resulted in a series of probing questions designed to 
help a learner think about the vignette in terms of the eight themes and a series of expected 
answers for each question. 

The second phase of the analysis involved the data collection at Fort Hood described in 
the previous subsection. These interviews helped to validate the questions, and to expand the 
content of the expectations with the answers provided by the users. The final phase of the 
analysis was an independent assessment of the vignette by a retired Brigade level commander. 
This SME conducted his assessment based on the eight TLAC themes to further validate the 
questions developed in phase I and to expand the question expectations even further. Once the 
analysis was completed, the curriculum script was developed with questions and their associated 
expectations grouped according to the eight TLAC themes. The curriculum script question and 
expectation structure was used as the baseline for the development of the ATEC model. 

Analysis of Statistical Methods for Input Evaluation 

The ATEC needed a flexible algorithm for performing pattem match operations between 
tutor expectations and responses typed by learners. The algorithm would need to allow partial 
matches based on similarity in meaning. AutoTutor uses LSA as its mechanism to represent 
meaning in comparing user inputs with expected answers. An alternative using a weighted 
inverse frequency keyword algorithm was used successfully in the past in the context of query- 
based information retrieval (Graesser, Hu, et al., 2002). Thus, a range of algorithms were 
analyzed to determine whether there were alternatives to LSA that could provide similar function 
without having to purchase a commercial license. There are various ways to obtain this 
similarity measure: word matching, keyword matching, weighted keyword matching, extended 
weighted keyword matching, and latent semantic analysis. Each will be briefly discussed next. 

Word Matching. Word matching can be considered as the simplest comparison. It 
calculates how many common words appeared in the expectation and the student's contribution. 
This method does not depend on context and does not depend on domain knowledge. Quality of 
the contribution is a function of the total words (the union of the two) and the common words 
(the join of the two). The mechanism of the computation can be understood as a Venn-diagram. 
The most commonly used formula for the computation is the ratio of the common words and the 
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total words, which restricts the similarity measxire to between 0 (completely differem) and 1 
(completely identical). The advantage of "word matching" is its intuitiveness and its ease of 
computation. 

The disadvantage of this method is the lack of emphasis on important words. For 
example, in the expected answer "/r is likely the enemy does not know 2"'^ Bde 's intent and plans 
at this time" the word "enemy" carries more information than words such as "it" and "and" that 
provide a more common function. Word matching simply ignores this difference. A technique 
that does take into account important words, while ignoring function words, is the keyword 
matching comparison. 

Keyword Matching.   In this comparison method only "keywords" are considered. 
Function words like "it" or "the" are ignored. The advantage of this method is the emphasis on 
the important words. Keyword matching is the most widely used method in document retrieval. 
However, there are some requirements that need to be satisfied in order to have this method work 
well. This is particularly true for narrowly defined domains, where it depends on the domain 
whether a word can be qualified as a keyword. In most of the cases, the list of key words is 
simply the list of glossary items. The advantage of the keyword matching method is that it 
distinguishes between common function words and meaningfiil keywords. The disadvantage is 
that the method is very domain dependent. Furthermore, there is still differential importance as 
to how much information it carries. Weighted keyword matching differentiates the relative 
importance of keywords. 

Weighted Keyword Matching. The advantage of weighting keywords differentiy is to 
emphasize special terms based on the domain. For example, in the expected answer " "It is likely 
the enemy does not know T"^ Bde's intent and plans at this time" the words "enemy" and "plans " 
may be weighted differently. There are varieties of ways one can assign weights to words. For 
example, one can assign a weight to a word based on its firequency in ordinary written language. 
Another way to assign weight is to consider how important the word is in the context. The 
former is easier because it can be obtamed either by computing the relative fi-equency fi-om a 
given corpus, or by using an established database (e.g., CELEX, Piepenbrock, 1993). The latter 
is harder, because it will be heavily dependent on domain expertise. From the performance point 
of view, a proper combination of both is tiie best. The disadvantage is the difficulty of assigning 
the weights in advance. Like the keyword matching method, the weighted keyword matching 
method is heavily domain dependent. 

Extended Weighted Keyword Matching All of the above three methods are very simple 
matching methods. Even tiiough tiie weighted keyword matching is very flexible due to tiie 
variety of ways of assigning weights, it is still based on exact matches of words. A more 
sophisticated method of matching would include synonymous words. For example, the word 
"enemy" has synonyms like "opponent or "foe" words. The original expected answer "It is 
likely the enemy does not know T^ Bde's intent and plans at this time" should tiierefore be 
extended to a larger set of words tiiat includes all synonyms of the original keywords. This 
means that even if student's input does not exactiy match tiie original keywords, it is still 
possible to obtain tiie similarity between tiie expected answer and tiie shident's contiibution. 

34 



The advantage of this method is that it allows for nonzero-similarity even if there are no common 
words between expected answer and student's contribution. 

All methods mentioned so far are, in essence, matching strings of letters. Each word is 
represented as a string of letters (words or synonyms) and the importance of a word (weights 
based on frequency or domain importance). In order to make all work well, there are several 
computational linguistic tools needed. For example, in order to obtain the word frequency 
information, one needs to have word frequency lists (Kucera & Francis, 1967; Piepenbrock, 
1993). In order to obtain synonyms, one needs to use lexical databases like WordNet (Fellbaum, 
1998). However, existing lists and databases are constructed from corpora representing general 
English usage and do not cover specialized terminology in any particular domain. When dealing 
with Army command reasoning these lists and databases will not give accurate frequency counts 
or synonyms.   Specialized lexicons and/or synonym lists must be constructed. 

However, there is another way of computing similarity between texts that is not based on 
matching letter strings. The smallest unit in the above mentioned "matching method" is the 
word. Matching of two words is the basic computation. Any two words are either matched or 
not matched. There is no intermediate. The new method starts with a new representation of each 
word. Instead of using a letter string, it uses a numerical vector in a multi-dimensional space. In 
this case, the lowest level of computation is no longer at the level of the word; it is at the level of 
each dimension of the vector for the word. One example of such method is LSA. 

Latent Semantic Analysis (LSA). The LSA represents each word as a real vector (up to 
500 dimensions). The similarity between any two words is simply the normalized dot-product 
(cosine) of the two corresponding vectors. The key to LSA is the vector representation of the 
words. The way LSA obtains the vectors for a given domain is simple. First, the domain 
knowledge in the form of a repository of documents is collected. For example, the repository 
may be all the available texts in a given domain (combat guidelines for the Army, for example), 
or even in a general world knowledge, like the encyclopedia. Next, the documents are indexed 
so each document has a unique number. This number may be as high as a million. Each word is 
then represented as a vector with the same dimensions as the number of the documents in the 
repository. 

For each word, the values in the corresponding vector are determined as follows: if the 
word appears in document i nj times, then the i* entry will take a value that is a ftmction of ni and 
i. All words together form a huge matrix with the number of rows equaling the number of 
words, and the number of columns equaling the number of documents in the repository. After 
the huge matrix is obtained, the most important dimensions are found by conducting a principle 
component analysis to the matrix. The LSA then uses only the most relevant dimensions to 
represent each word and use it to obtain similarity between the words (see Hu, Cai, Graesser et 
al., 2003; Hu, Cai, Franceschetti et al., 2003). When LSA is used to compare two documents, it 
simply first adds the vectors from each document separately (vector summation) and computes 
cosine values from the vectors. 

Evaluation. There are several advantages to using LSA. First, computationally it is a 
rather simple technique. For instance, it does not need a frequency database for all the words, 
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but automatically retrieves the frequency from the repository of available documents. Secondly, 
LSA does not need additional methods to obtain synonyms. Instead, the co-occurrence of the 
words in the documents estimates the similarity of the meanings. The use of LSA in commercial 
systems requires a moderately expensive license ($50,000 initially and $25,000 per year at the 
time this effort began, although the initial cost has since been eliminated). Because alternative 
and less costly methods are available, ATEC does not use LSA. Instead, we use the next best 
method, that of extended weighted keyword matching. Graesser, Hu, et al. (in preparation) 
performed a number of comparisons between matching algorithms in a system that answers 
questions posed by learners in natural language. The extended weighted keyword matching 
algorithm alone did slightly better than LSA did alone, but a hybrid system that combined LSA 
and the keyword algorithm did approximately 8% better than the extended keyword algorithm 
alone. The general wisdom is that LSA is expected to be particularly powerftil when there is a 
greater reliance on inferences and implicit worid knowledge than on exact matches to explicit 
text. 

Improvement of Statistical Methods 

Threshold. The information needed to determine a reasonable threshold is the statistical 
properties of all the inputs. It may also involve systematic evaluations from field experts. For 
example, one needs to obtain the statistical distributions of all the similarity measures for any 
given input size. Let's assume ni and ui are the size of the student's input and the size of the 
expected answer for a given seed question. The mean and standard deviation of the similarity 
measure are: m(ni n2) and s(ni, na). This specifies the distribution of similarity measures for all 
students' inputs (wdth ni words) and the expected answer (here ni is the number of words in the 
expected answer). For any specific input from a student, a z-score can be obtained, which 
measures how good the input is in comparison to the population (all other possible inputs from 
students). The arbitrary value of 0.5 (currentiy used in ATEC) may be appropriate for some 
document sizes, but not for others. One method for potentially improving the responsiveness of 
ATEC is to fine-tune the threshold. 

To address the issue of threshold, there are some possible steps to take for fine-tuning: 

1. For any of the seed questions, collect all the answers from real students (with variable 
domain knowledge). 

2. For each seed question, apply the above-mentioned formula to all possible inputs for the 
question and the expected answer. This will resuh in two empirical distributions: the 
distiibution of tiie length of the response, and the distiibution of the similarity measures 
as a function of the input size. 

3. For each student input, have the experts rate the quality. 
4. Find the threshold (z-score) for good, median, or poor answers. 
5. Use the threshold in tiie evaluation of tiie students' inputs. 

If the threshold is determined in this way, the similarity measure of 0.5, will correspond to 
different z-scores for different docvraient sizes, hence it may exceed the criteria (as good answer) 
in some cases and fail in some other document sizes. 
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An analysis was conducted using a small set of input logs generated by six ARI personnel 
to determine how closely the IDF algorithm matched expert judgments as to whether the inputs 
were good or not. A SME rated the 351 answers input to ATEC. The mean of the ratings was 
4.37 (1 = best and 6 = worst) with SD of 1.09. However, comparable IDF ratings had mean of 
0.031 (0 = worst and 1 = best) with SD 0.98. The correlation between human and IDF algorithm 
was substantial (r = 0.47), but low. Comparing human ratings with IDF, among only the 48 
answers rated as good (1 = good versus 2-6 = not good) by the SME, only 4 of the 48 good 
answers exceeded IDF of 0.5. 

Further analysis of recall and precision were conducted to evaluate the relationship of 
IDF to expert judgments. Recall is the ratio of true positives (both IDF and expert evaluate as 
good) to all expert positives, while precision is the ratio of true positives to all IDF good 
responses. Considering only good responses, an IDF threshold of .5 yielded a recall value of 
0.18 and a precision value of 0.75.   If a threshold of .4 was used, recall increased to .31 and 
precision dropped slightly to 0.71. Recall is particularly important as a goal to minimize false 
negatives (inputs that an expert rates as good, but the IDF does not) since those are most likely to 
make the system respond inappropriately to the user. In sum, this analysis indicated a threshold 
of .4 might result in smoother dialog. 

Corpus. The IDF method is also improved with the size of the docimient corpus used. 
Thus, enlarging the corpus may improve the quality of the match. However, the improvement is 
only possible with relevant additional documents; that is, those using the same terminology as 
the expected student inputs. The initial corpus was enlarged by adding text from additional 
documents.   It is an open question whether further improvement could be accomplished with 
additional documents. 

Spell Checking. Not surprisingly student input contains spelling errors. In fact, research 
has shown that human typewritten text contains approximately l%-3% spelling errors (Grudin, 
1983). Correcting these errors in intelligent tutoring systems could be important, particularly if 
word comparison techniques are used. A typo in a correct answer could be interpreted by the 
system as a wrong answer, particularly if there are no accompanying words supporting the 
misspelled word. Furthermore, given that ATEC students are monitoring the situation, 
evaluating possibilities and thinking through potential solutions, attention on typing and typing 
errors may be reduced. 

Implementing spell-checking utilities in intelligent tutoring system is difficult. First, the 
system carmot anticipate what errors the student will make. A possible solution to this problem 
lies in matching the student input to a large lexicon and calculating the probability of the correct 
spelling of a word. The problem with this is that the lexicon will have to be extremely large, 
accounting for words both within and outside of the domain. Besides, matching each word 
against this lexicon will slow down the responsiveness of the system considerably. 

Various spell checking software packages are available, http://www.spellchecker.com 
and http://www.spelling-software.com, that are mostly comparable to the spell check facility in 
Microsoft Word. Spell checking can of course also be developed using Bayesian networks and 
n-gram analyses. Currently web-based spell check facilities that work with specific domains are 
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not implemented in the ATEC tutor. Because the statistical comparison method used in ATEC is 
not based on a word match only, misspelled words will still allow the system to interpret and 
respond naturally. 

Semantic Reasoning 

One of the goals for ATEC was to incorporate a hybrid approach for evaluating student 
inputs, combining statistical techniques with deep reasoning using a semantic representation of 
selected aspects of domain knowledge. For example, statistical methods do not allow 
distinctions between "move from Phase Line Dime to Objective Meade" and "move from 
Objective Meade to Phase Line Dime." Such distinctions could be made using symbolic 
representations using a frame or proposition^ structure. An iGEN-based instructional agent 
could then reason about the semantic representation of student input in comparison with 
semantic representations of expected answers to questions or in comparison with a representation 
of the vignette semantics and possible appropriate actions in the circumstances. A number of 
issues would need to be addressed to develop a workable solution, including: (a) natural 
language understanding, (b) semantic representation format, (c) reasoning methods for 
evaluation of student inputs, and (d) natural language generation. 

The first problem to solve is natural language understanding. Thus, we undertook an 
investigation to determine whether there are tractable methods for automatically extracting and 
representing the underlying meaning (semantics) of unconstrained natural language. The results 
of that analysis are presented here. 

Deep Versus Shallow Natural Language Understanding. One of the important 
distinctions in natural language processing techniques is between shallow and deep symbolic 
language understanding, hi a deep language analysis a complete spanning analysis of each input 
sentence is required. On the other hand, in a shallow semantic analysis a sequence of smaller 
constituents is identified, even if they are interrupted by un-analyzable spans (Stede, 2003). 
Deep is complete, shallow is partial. 

Clearly, the distinction between shallow and deep is one of gradation, rather than a binary 
distinction. On one side of the spectrum, a complete understanding of an utterance is unlikely 
and inefficient; on the other, a partial understanding of an utterance without a deep knowledge of 
the essential building blocks sometimes falls short. Dialog planning based on formal reasoning 
is extremely difficuh. However, our research goal was to determine whether there were 
reasoning methods based on shallow semantics that could be used to supplement the pattern 
matching of statistical methods to enhance the dialog. 

Lexical Databases for Computational Linguistics. Despite the fact that various 
computational Imguistic techniques like LSA, IDF and neural networks have been developed to 
derive the semantic and syntactic relation between words, sentences and paragraphs, there has 
always been a need for lexical databases. One of the reasons databases are needed relates to the 
high precision and detailed information that is often required in natural language processing. 
Identifying relations with a high precision rate for a large number of words remains a task best 
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handled by databases. The price that has to be paid for this is that databases are extremely labor 
expensive and very inflexible. 

Currently, the most developed and most commonly used database for English is WordNet 
(Fellbaum, 1998), an online lexical reference system that identifies a large number of nouns, 
verbs, adjectives and adverbs and lists their sense entries. But the database is more than just an 
electronic dictionary. In addition, WordNet organizes these entries in sets of synonymous 
relations. These relations can hold between words, their senses or even between synonymous 
relations themselves. 

Because WordNet deals with lexical relations between words, it is no surprise that the 
database only consists of lexical (open class, meaningful) items. Take for instance the entry 
"attack." WordNet will divide this entry into a noun, verb or adjective, each with a number of 
senses (9, 6 and 1 respectively). For instance, the verb senses range from "launch an attack or 
assault on; begin hostilities v^th, as in warfare" like in "Serbian forces assailed Bosnian towns 
all week" to "set to work upon; turn one's energies vigorously to a task" like in "I attacked the 
problem as soon as I got out of bed." 

Let's focus on the first sense, the warfare domain, and related WordNet returns: 

2a. fight, struggle ~ (be engaged in a fight; carry on a fight; "the tribesmen fought each 
other" or "Siblings are always fighting") 

2b. =>defend ~ (be on the defensive; act against an attack) 
2c. => submarine ~ (attack by submarine; "The Germans submarined the Allies.") 

=> pepper, pelt ~ (attack with missiles or questions) 
=> strike, hit - 

2d. *> Somebody —s something; *> Somebody —s somebody 

WordNet returns synonyms as given in 2a above, antonyms as given in 2b, troponyms 
(particular ways to attack) as given in 2c above (2 of the 28 given here), and sentence frames as 
given in 2d and familiarity counts. In addition, a range of other relations are identified by 
WordNet including whether words are causal (e.g., 'break') or meronymous relations (parts of 
an attack). 

WordNet does not deal with specialized domain vocabularies, and consequently could not 
assist with determining that "CG" or "Commanding General" are essentially used 
interchangeably. Thus, any use of WordNet to determine equivalency of words would need to be 
supplemented by a domain specific synonym list. Furthermore, WordNet does not deal with 
word order or semantic relationships among words in a sentence. 

A project related to WordNet can solve the problem of word order and therefore is an 
attractive computational linguistic addition. The FrameNet project (Ruppenhofer, Baker, & 
Fillmore, 2002) is a lexicon-building effort in which frames and conceptual structures that 
imderlie words are identified. Like WordNet, FrameNet is a dictionary and thesaurus and like 
WordNet it goes far beyond that. FrameNet is fotmded on corpus attestation, identifies frames 
going far beyond WordNet's "Somebody —s something" and contrary to WordNet identifies 
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relationships among words in a single frame that are of different parts of speech. These frames 
are intuitive constructs that formalize the links between syntax and semantics forming schematic 
representations of situations involving various participants, props, and other conceptual roles (the 
frame elements). For instance, FrameNet will tell us that the verb "attack" will involve an 
assailant, a victim and a weapon, in addition to place, time, reason and purpose. In addition, 
FrameNet states that this frame is related to lexical units like ambush, assauh, charge, fall, 
invade, offensive, onslaught, strike, etc. This makes FrameNet extremely useful for word sense 
disambiguation, machine translation, information extraction, and question answering. It is the 
information extraction capability of FrameNet that provides the most potential for automated 
meaning extraction for an ITS such as ATEC. 

The emphasis of FrameNet is on semantic relations. More emphasis on syntax might be 
needed for a more advanced use of verb information for intelligent systems. VerbNet offers this 
additional information. VerbNet is a verb lexicon with syntactic and semantic information for 
English verbs. It uses verb classes categorized by Levin (1993) to systematically construct 
lexical entries. VerbNet identifies a set of semantic predicates associated with each syntactic 
frame in a verb class. Whereas FrameNet uses lexical semantics as a basis, VerbNet uses 
argument syntax. The result of this is that FrameNet provides frame descriptions, VerbNet 
provides verb classes and alternations. 

The other difference lies in the assumption underlying VerbNet. It assumes that verbs 
across languages are semantically similar. See Baker and Ruppenhofer (2002) for a more 
extensive comparison. For instance, if we take a verb like "to seize" VerbNet provides the 
following information: 

Thematic Roles 
Agent[+animate OR +organization] 
Beneficiary[+animate] 
Source[+animate OR [+location -region]] 
Themef] 

Frames 
-Basic Transitive 
-Benefactive Alternation (for variant + Source PP) 
-Benefactive Alternation (for variant) 
-Transitive (+ Source PP) 

[abduct, cabbage, capture, confiscate, cop, emancipate, embezzle, extort, filch, flog, grab, 
hook, kidnap, knockofif, liberate, lift, nab, nobble, pilfer, pinch, pirate, plagiarize, 
purloin, rustle, seize, smuggle, sequester, snatch, sneak, steal, swipe, take, thieve, wangle, 
weasel_out, wrest] 

By having more precise information than what is available in FrameNet, VerbNet can 
provide more specific questions, for instance regarding the source and benefactive (entity that 
benefits in the identified event). However, it is not important to illustrate how VerbNet can 
provide information exclusively. Instead, it is important to notice how databases like WordNet, 
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FrameNet and VerbNet are complementary. What one database cannot provide or cannot 
provide well, can be taken from another database in order to make the intelligent tutoring more 
natural. 

In our discussion of the databases we have moved from strictly semantic information, to a 
merge between semantic and syntactic information. By taking the main verb of a sentence 
various semantic entries become accessible, including various elements that accompany the 
(frame of the) verb. For instance, we know that the verb "to seize" has an Animate Agent, an 
Animate Beneficiary, a Theme and a Source and that this Source generally occurs in a 
prepositional phrase. 

Shallow Semantics for Automated Meaning Extraction. The most promising approach for 
automated meaning exfraction lies in shallow semantics using FrameNet. By taking into account 
the frame of the verbs that are expressed by the student, additional information about the 
student's input can be extracted. Such semantic frames are schematic representations of 
situations involving various participants, props, and other conceptual roles, so called frame 
elements (see Fillmore, Wooters, & Baker, 2001). Used in combination with WordNet and a 
domain-specific synonym database, equivalences in underlying representation can be derived 
from inputs using different terminology. 

The advantage of using proposition^ symbolic representations is that they support 
theorem proving and other systematic forms of inference generation. The disadvantage is that 
they are brittle when there is incomplete information. The statistical component is less brittle so 
a hybrid mechanism would still be desired. The exact pattern matching fimction of such a hybrid 
mechanism would need to be worked out. 

One possible use of semantic representations would be to identify a small set of 
categories of canonical reasoning packages that are used frequently in battlefield tactics. 
Examples of such packages are Transporting Troops from Location A to Location B and Taking 
Control of a Town. Each package would have a distinctive set of Questions for the curriculum 
script, inference rules, and semantic composition. The hope is that these packages could be 
recognized on the fly and instantiated dynamically during the tutorial session. 

Shallow Semantics for Question Generation. Another use of shallow semantics is to 
generate a large number of relevant mentor questions on the fly, which can motivate students 
thinking through the problem. By knowing which frame elements accompany verbs, we can 
anticipate questions related to student answers without imderstanding the student's answer 
thoroughly (deep semantics). For instance, if to the question "What can I make the enemy do?" 
a student answers "deceive the enemy," frame semantics tells us that the verb "deceive" is a 
transitive (can be accompanied by somebody or something undergoing the activity) or resultative 
(have clear, recognizable result and bring about changes) activity and has at least (a) a cause (the 
deceiver), (b) an animate cause, (c) an experiencer (the deceived), and an optional (d) instrument 
to deceive the experiencer with. Based on this information we can ask questions like: 

How would you deceive the enemy? 
Can you be more specific about who will be deceived? 
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Who would actually be doing the deceiving? 
What would be the result of the deceiving? 
What would you use to deceive the enemy? 

The phrasing of the question is not important at this point. What is important is the 
amount of inforaiation that could be questioned once the verb and subsequently its frame are 
known. The generated questions can then be embellished for instance by using synonyms of 
their elements, such as "How would you distract the opposing military force?" and "Can you be 
more specific about which part of the military force will be deceived?" and "What would be the 
effect of drawing the enemy's attention away?" 

Summary. In addition to the statistical comparison process for evaluating student inputs, 
conversations between intelligent tutormg systems and students could benefit from shallow 
semantic processing. This is particularly true for ATEC tutoring sessions where students are 
encouraged to think through the problem, rather than to solve the problem, like in AutoTutor. 
The curriculum script can ensure that the student stays on track, shallow semantic modules could 
allow the student to side track and for instance consider information at a more fine-grained level, 
consider information that does not directly need to be explicitly expressed to solve a problem but 
should be considered. However, the complexity of analysis and the issues with integratmg the 
various components needed precluded development of the semantic processing components 
within this Phase II effort. 

iGEN Enhancements for Dialog and Performance Assessment 

A dialog extension of iGEN was created to develop ATEC and other tutoring dialog 
applications. In such applications, the end user interacts with the computer through a textual 
window that can be embedded into any type of user interface. The main extensions to iGEN are: 

• Set of new operators to handle tutorial dialog. 
• Extension to the metacognitive blackboard that automatically stores all information 

related to the dialog so that it can be accessed by some tasks or other components of 
the model. 

• Text comparator to compare user inputs to expectations generated by the model when 
asking a question. 

The new operators included an operator for specifying a dialog chunk, including: a 
leading question, a set of expectations (a single expectation, a conjunction or disjunction of 
expectations, or a combination of both), and subquestions with expectations. The execution 
engine handles comparing student input with all nested expectations and determining which have 
been satisfied at whatever criterion is set. It then follows the tree of subquestions, asking only 
the subquestions whose expectations have not been satisfied. There is another dialog operator 
that is for statements to be used for non-question dialog (e.g., responding to frozen expressions). 

New components in the metacognitive blackboard of iGEN track the status of the dialog 
including the status of all questions and expectations (what has been asked and what expectations 
have been met) and calculate performance assessment scores. 
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The text comparator allows comparison of user input to expectations within a dialog 
chunk. Currently, this match is calculated by invoking the statistical comparison module. The 
mechanism allows specification of any valid iGEN instructions to be executed when an 
expectation is met (e.g., posting new blackboard elements, which may in turn trigger other tasks 
or update a student model). 

Authoring/Testing Tools 

A number of authoring and testing tools were developed as part of this research as 
described in this section. 

iGEN A uthoring 

One authoring tool was an extension of the iGEN authoring capability. The iGEN 
incorporates a graphical interface for developing models. This is the Cognitive Network 
(COGNET) Execution Language (CEL) for COGNET Graphical Representation (CGR). The 
translation between CEL and CGR is done automatically and continuously by iGEN. The CGR 
is a visual representation of the structure of the code, using lines and nodes to show the 
relationships among operators and attributes. Authoring involves clicking on a node showing 
places where additions are possible. The authoring environment provides pop-up menus of the 
syntactically correct set of operators possible at any point. Inserting one is a matter of menu 
selection. In addition, debugging facilities test the model to determine completeness and 
consistency. With the addition of operators for handling tutorial dialog discussed above, the 
authoring environment was modified to include all the dialog operators, allowing easy 
development of models incorporating dialog. 

Logging Tools 

In order to improve the system it is necessary to identify which components failed, why 
they failed, areas where improvements could be made, etc. In order to accomplish this we 
developed various logging mechanisms in which detailed logs of the user interactions, system 
interactions, and interactions between different components were maintained. These detailed 
logs are then filtered down to a granularity desired using scripts written in PERL. Some types of 
filtering were used to look specifically at the dialog management, while others were used to look 
at the tracking of the student input in the metacognitive blackboard. 

An example of detailed log followed by a filtered log to improve on the dialog 
management is shown below. The detailed log has a lot of information that is not useful for 
improving the dialog smoothness hence using a PERL script we abstract only the actual 
interactions between the system and the user, which is then analyzed further. 

Detailed Log; 
D ask question: 
Ql BEING_ASKED 
Q1.1N0T_ASKED 
(orEl.laEl.lbEl.lc) 

Q What is higher command's main objective? 
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E currentexpectations: El.la El.lb El.lc 
E "El.la" The CG's main objective is to destroy the 2 TD before it can withdraw to 
Centralia. 
E "El.lb" Attack to seize OBJs HAMMER, SWORD, and SABRE in order to cover the 
passage of 25th AD 
E "El.lc" Control key terrain along PL IOWA and secure passage lanes through our 
zone to facilitate 25th AD's attack 
U to defeat the 2nd mech army 
D classification: CONTRIBUTION nouns: army 
D match result: 0.0028 El.lc 
D match result: 0.0037 El.lb 
D match result: 0.0105 El.la 
D resulting question status: 
Ql BEING_ASKED 
Ql.l BEING_ASKED 
(orEl.laEl.lbEl.lc) 

C Consider the following. 
D ask question: 
Ql.l BEING_ASKED 
(orEl.laEl.lbEl.lc) 

Q What does the Op Order say about the Command General's main objective? 
E current_expectations :El.laEl.lbEl.lc 
E "El .la" The CG's main objective is to destroy the 2 TD before it can withdraw to 
Centralia. 
E "El .lb" Attack to seize OBJs HAMMER, SWORD, and SABRE in order to cover the 
passage of 25th AD 
E "El.lc" Control key terrain along PL IOWA and secure passage lanes through our 
zone to facilitate 25th AD's attack 
U corps or division? 

Filtered Log: 
Q What is higher command's main objective? 
U to defeat the 2nd mech army 
C Consider the following. 
Q What does the Op Order say about the Command General's main objective? 
U corps or division? 

Separate Text Only Interface for Evaluating Without Full System 

To test the language components quickly and efficiently, we developed a text only 
interface using Python and Tool Command Language (TCL)/Toolkit (TK). This helped in 
ensuring that the interface components were developed in parallel with the language 
development. Using this tool, the language components could be exercised v^thout the user 
interface or multi-user web services. 
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Testing Parsers 

As mentioned above, different computational linguistics components need specific parser 
outputs for efficient operation. Evaluating different parsers is difficult without a visualization 
tool. In order to facilitate parser evaluation we built a web-based visualization tool using Java. 
The tool visually presented the parse as a tree in which a given node in the tree can be collapsed 
or expanded as desired. This tool also showed the parse of a given sentence using two different 
parsers side by side thus readily presenting the differences in both parsers. 

FrameNet Evaluation Tool 

As part of our investigation of semantic representation, we evaluated the use of 
FrameNet. In order to evaluate FrameNet we took the existing Extensible Markup Language 
(XML) files and put it into a MySQL database so that the frames of a given word could be 
readily obtained by querying the database using Java. 

Lessons Learned 

This section documents some of the lessons learned in our attempt to build a dialog-based 
tutoring system that assists military personnel in acquiring and practicing flexible tactical 
reasoning strategies in realistic war scenarios. It is widely acknowledged that automated 
comprehension and generation of natural language in dialog is an extremely difficult technical 
challenge even though significant progress has been made in recent years (Allen, 1995; Graesser, 
VanLehn, et al., 2001; Jurafsky & Martin, 2000). Furthermore, application of dialog-based 
tutoring to higher-order cognitive skills makes the problem even more difficult. A perfect 
natural language tutorial dialog system has not yet been built, but some significant achievements 
are immediately within grasp. The question arises, however, whether the dialog systems that can 
be built are sufficiently high in quality that they can be used in practice. The answer to this 
question is not clear-cut, but rather "Yes, No, and Maybe." This section will identify what is 
versus what is not feasible according to available evidence and functioning systems and the 
experience gained fi-om the ATEC development. 

Four Quadrant Framework 

When is it feasible to build a conversational system with natural language dialog? We 
find it convenient to consider two dimensions when answering this question: shared knowledge 
and precision. To the extent conversational maxims and principle are followed (Grice, 1975), 
the content of learner-tutor system dialog is generally truthful, accurate, relevant, and 
stylistically smooth. However, shared knowledge and expected precision determine to what 
extent the participants (system and learner) must obey the conversational principle in order for 
the dialog not to fall apart. 

The first dimension is the amount oi shared knowledge between the dialog participants, 
in this case the learner and tutor. When the amoimt of shared knowledge is high, the speech 
participants are more picky on what each other says, so the bar is raised on what the dialog 
system can deUver. For instance, when talking to members of the 2"'' Brigade, the amount of 
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shared knowledge is likely to be so high that any deviation from that knowledge becomes 
awkward. 

On the other hand, when the shared knowledge is low (a member of the 2"'' Brigade and a 
tutor system) participants have more flexibility in the truth, accuracy, relevance and style of the 
dialog, because one participant does not know the other well enough. During the conversation a 
common ground needs to be created. Similarly, the tutor system can get away with more 
imperfections when the shared knowledge is low or intermediate because most learners would 
not know the difference between a moderate and a high fidelity tutor. 

The second dimension is the amount of precision expected by learners or users of the 
system. If high precision is expected, but not delivered, users can be profoimdly irritated. For 
example, it would not be smart to build a conversational system that talks through every single 
minute and every single coordinate of a high-risk military operation. Similarly, mathematics, 
statistics, and formal logic are not well suited to dialog in natural language. On the other hand, 
an example of low precision is chatting between officers in a bar. The information does not have 
to be highly precise, as long as it does not harm the conversation. The exact decisions behind an 
officer taking a short-cut to the cinema is not of crucial importance, whereas they might be for a 
commander deciding on a crucial step in a mission. 

Four quadrants can be identified when shared knowledge is crossed with precision. 
These are depicted in Table 1. Quadrant 1 is an impossible achievement at this state of the 
science. The question can be raised whether this quadrant would even be desirable. It can be 
argued that for high precision and high shared knowledge dialog conversational systems are not 
the best solution. Quadrant 4 is entirely feasible and has been demonstrated to be successful for 
college students learning about introductory computer literacy. Despite its low to intermediate 
precision, there is strong evidence that students still learn from communicating with the 
intelligent tutoring system, simply because they need to think about the problem and actively 
articulate an answer (see Graesser, VanLehn, et al. 2001). In addition, the tutoring system keeps 
up the appearance that it knows what it is doing, even in cases where this is not entirely true (low 
precision). 

Table 1 

Four Quadrant Analysis 

High Precision 

Low to Intermediate 
Precision 

High Shared Knowledge 

QUADRANT 1 
Not feasible and sometimes imdesh-able. 

Conversation system to balance personal 
bank account is not recommended  

QUADRANT 3 
Feasibility is a research question. 

A conversation system that serves as a 
good friend has not yet been tested. 

Low Shared Knowledge 

QUADRANT 2 
Feasibility is a research question. 

Being tested in Why/AutoTutor for conceptual 
physics.   

Very feasible. 
QUADRANT 4 

Demonstrated in the design and tests of 
AutoTutor for introductory computer literacy 
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The jury is still out for Quadrants 2 and 3. There is evidence that even if high precision is 
required, intelligent tutoring systems are successful in conversations where tutor and student 
have limited shared knowledge (see Graesser, VanLehn et al., 2001). For Quadrant 3 less 
progress has been made. Some chatterbox entities are available, but their conversational skills 
are limited. Part of the problem is that high shared knowledge and low precision requires a 
sophisticated level of mixed initiative dialog (see Louwerse et al., 2002). Given that mixed 
initiative dialog is a complicated process (Allen, 1999), Quadrant 3 remains one of the key 
research areas in computational linguistics. 

The ATEC is in some ways in Quadrant 2 and in others Quadrant 3. Consistent with 
Quadrant 3, the learners are hardly novices in the subject matter of battle tactics and there are not 
a large number of precise numbers, spatial indices, and time logs. Consistent with Quadrant 2, 
however, there are nontrivial consequences to confusing the relative locations of landmarks, 
paths, positions, people, weapons, and other components that need some degree of precision. 
But there is lower shared knowledge to the extent that the scenario envisioned by the tutor is not 
the same as the scenario envisioned by the student. The ATEC application fell in quadrants 
where there was some uncertainty as to the feasibility of building dialog systems in natural 
language. Additional research is therefore warranted. 

Limitations of Open-ended Questions 

Because battle-command reasoning rarely contains a single best response to a tactical 
situation, the decision was made to avoid constraining the learner with a specific solution 
strategy, set of tactics, or right answer advocated by the tutor. As a consequence, the tutor asked 
open-ended questions that addressed the eight themes and relied on the user to fill in information 
to answer the question. The tutor was designed not to give negative feedback on the learner's 
content and was not supposed to steer the user to a right answer. Instead, the learner received a 
set of theme-specific questions, at varying levels of specificity. This approach is quite different 
from AutoTutor's approach to coaching a user to answer a question (Graesser, Person, Harter, & 
TGR, 2001; Graesser, Hu, et al., in preparation). For AutoTutor, there is a set of expected 
answers, misconceptions that call for corrections, short feedback on what the learner expresses, 
and dialog contributions that steer the user to specific content. 

Unfortunately, there were a number of liabilities to implementing open-ended questions. 
The tutor can never give exact feedback to the learner on the quality of their contributions. This 
results in the risk of the learner wondering whether the tutor is really listening and 
understanding. Also, because the tutor never steers the learner to a particular family of answers, 
there is an extremely low likelihood of the learner being a good "mind reader" and articulating 
what the tutor has in mind. Given the low matches between learner answers and the tutor's 
curriculum script content, the tutor's open-ended questions end up coming out of the blue and 
detached from tiie learner's mindset. The learner and tutor are operating under two different 
worlds, essentially blended monologs rather than integrated dialogs. 

A better solution might have been to steer the learner to some semblance of expected 
content. This does not imply that a singular answer is expected. A sample of 20 experts could 
supply answers to the general questions, yielding a family of correct answers. If a learner's 
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contributions matched any oi" the 20, then such contributions would be regarded as acceptable 
and would guide the tutor's feedback. If the learner's contributions matched none of the 
contributions, then the tutor would steer the learner on one of the more common threads. The 
family of answers could grow from 20 to a larger sample if new (good) answers of learners are 
stored; essentially, the computer learner would learn from experience (see Psotka, Streeter, 
Landauer, Lochbaum & Robinson, in preparation, for an example of this). After a while, it 
would be unlikely that contributions of a new learner would be novel. 

Intelligent Conceptual Pattern Matching 

Conceptual pattern matching is needed when the learner contributions are compared with 
the expected answers. It is widely acknowledged that brittle pattern matching algorithms, such 
as exact string matches or keyword matches are too brittle for going the distance in providing 
adequate conceptual pattern matches. In a nutshell, there is a very small proportion of successful 
matches, and a high error rate of missing reasonable matches. Stated differently there is a very 
low rec^l rate, where Recall = p (pattern matcher finds match|human would declare match). 
AutoTutor used latent semantic analysis (LSA) as a flexible conceptual pattern matcher 
(Graesser, Wiemer-Hastings et al., 2000; Graesser, Hu, et al., in preparation), as discussed 
earlier.   Also as discussed earlier, ATEC used a substitute algorithm, IDF. 

There are a number of approaches to improving the conceptual pattern matching of 
ATEC. One option is to purchase a license for LSA. A second is to improve the substitute 
algorithm (see next subsection). A third is to have brittle matches, but to consider the large 
family of 20+ expected threads, as discussed above. If a content word in a contribution matches 
any word in the 20+ threads, then the content word is scored as relevant. A fourth is to invent a 
new quantitative algorithm that operates on the family of 20+ expected threads. This is a 
question for future research. What we do know is that a brittle match to a small set of expected 
threads is entirely inadequate. 

Improvement of IDF as Pattern Matching Algorithm 

The response from ATEC after each student's mput was not as appropriate as expected. 
Specifically, the system often determined the student's input was not a match and asked a 
follow-up question that was repetitious (see the example log in Appendix B). 

To improve the IDF algorithm, the fixed threshold of 0.5 should be changed. A 
preliminary analysis mentioned above indicated that the threshold could be lowered to 0.4. 
Alternatively, the threshold could be a statistical value instead of a constant. Hu, Cai, 
Franceschetti, et al. (2003) have examined a similar issue when LSA values are used as 
estimates of similarity between documents. The further tuning of IDF methods requires 
obtaining more responses from students and rating them by field experts. In this way, a 
threshold fimction (sensitive to the size of the expectation and responses) can be obtauied to 
optimize the accuracy of the conceptual pattern matching. 
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Improvement ofATEC as a Web Application 

Currently ATEC is an application with a collection of modules that were originally 
designed for desktop applications, such as some AutoTutor modules and iGen Modules 
(BATON—the iGEN execution engine). A common issue for such migration (from desktop, 
single user application to web-based multi-user application) is the efficiency of memory 
management. For example, every time a new user is using BATON, a sizable memory is located 
(12 Mega Bytes (MB)) for each user imtil the user terminates the session. The number of 
simultaneous users for ATEC is limited by the amount of Random Access Memory (RAM) in 
the computer (about 10 users for 256 MB RAM) due to the capacity issues of certain modules. 

The steps towards a truly web-based ATEC can be outlined as follows: 

1. Examine how large the signature memory is for every request. This can be examined by 
simply comparing the size of the RAM used before a request versus during a request 
being accepted. 

2. Perform a stress test on every module in the ATEC application. There are a lot stress test 
tools available. Having this test, the bottleneck modules in ATEC can be identified. 

3. For those instances that requires more resources, consider separate resource modules. 
This allows large chvmks of common memory to be loaded as read-only, to be shared by 
multiple users. 

4. New programming technology can be introduced to integrate the modules, even rewriting 
some of the modules. For example, the dot-net framework works very well in the new 
version of AutoTutor, which is a 100% web based application. 

Conclusions 

Computer-based natural language dialog systems are feasible for some classes of tutoring 
environments, namely those in which domain knowledge is qualitative and the shared knowledge 
or common ground between the tutor and learner is low to moderate rather than high. The ATEC 
is in a borderline area. The goal of developing an ITS for a complex skill (e.g., battle-command 
reasoning) remains a challenging problem for the current generation of conversational systems. 
More promising applications are conceptual domains in which the goal is to impart knowledge. 

Deep natural language understanding is still problematic. More promising approaches 
rely on being able to anticipate the user's possible inputs (both good answers and those 
indicating misconceptions). The system's response is then dependent on a process of matching 
the user input to one of the anticipated set of possible responses, and responding accordingly. 

Some incremental changes were identified that could potentially improve ATEC. These 
include: changing or improving the conceptual pattem matching algorithm and re-implementing 
the system for efficiency as a web application. Also dialog management might have a richer 
state fransition network or dynamic planning. 

In sum, the value of the ATEC development effort is twofold. Lessons learned on 
technical challenges and changes required should be usefiil in fiiture efforts on higher-order 
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thinking skills, such as battle command reasoning. Technologies developed, including 
refinements to the tutoring architecture and underlying pedagogical approach, should readily 
apply to other training problems more amenable to conversational dialog. 
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Appendix A 

AI 
APP 
ARI 
ATEC 

BATON 

C4ISR 

CEL 
CG 
CGR 
case 
COGNET 

EMT 

FBC 
FUTURETRAIN 

Acronyms 

Artificial Intelligence 
Apple Pie Parser 
Army Research Institute for the Behavioral and Social Sciences 
Automated Tutoring Environment for Command 

Blackboard Architecture for Task-Oriented Networking 

Command, Control, Communications, Computer, Intelligence, 
Surveillance, and Reconnaissance 

COGNET Execution Language 
Commanding General 
COGNET Graphical Representation 
Command and General Staff College 
Cognitive Network 

Expectation and Misconception Tailored 

Future Battlefield Conditions 
Training of Future Brigade Combat Team Commanders 

and Staffs 

HWIM Hear What I Mean 

IDF 
I/ITSEC 

ITS 

LSA 

MB 

PACO 
PP 

RAM 

SBIR 
SD 
SME 
SOAP 

Inverse Document Frequency 
Interservice/Industry Training, Simulation, and Education 

Conference 
Intelligent Tutoring System 

Latent Semantic Analysis 

Mega Byte 

Pedagogical Agent for CoUogen 
Prepositional Phrase 

Random Access Memory 

Small Business Innovation Research 
Standard Deviation 
Subject Matter Expert 
Simple Object Access Protocol 

A-1 



TCL Tool Command Language 
TK Toolkit 
TLAC Think Like A Commander 
TRG Tutoring Research Group 

VIVIDS Virtual Interactive ITS Development Shell 
VM Virtual Mentor 

XML Extensible Markup Language 
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Appendix B 

Example Annotated Log 

C: = Computer 
U: =User 
Italics = Annotation of computer dialog moves and internal processing 
Bold = Scores from matching algorithm 

C: What is higher command's main objective? [Askfirst question Ql] 
U: Seize objs hammer, sword, and sabre to cover the passage of 25AD. 

[Compare to the following 3 or-expectations] 
El.la The CG's main objective is to destroy the 2 TD before it can withdraw to Centralia. 

0.0031 
El.lb Attack to seize OBJs HAMMER, SWORD, and SABRE in order to cover the passage of 

25th AD 0.9658* [satisfied] 
El.lc Control key terrain along PL IOWA and secure passage lanes through our zone to 

facilitate 25th AD's attack 0.0342 
[Question answered because second expectation matched over threshold, so don't ask 

subquestion Q. 1.1 " What does the Op Order say about the Commanding General's main 
objective? "] 

C: Okay, I See. [Say Acknowledgement marker] 
C: What is the plan to achieve higher command's main objective? [Ask next question Q2] 
U: Seize objs meade, hill, grant, and lee. 

[Compare to the expectations of all subquestions] 
E2.1.1 The crossing sites over Stranger Creek. 0 
E2.1.2a To infiltrate the security zone, attack and seize Objective Sword. 0.0395 
E2.1.2b Conduct an infiltration and attack to seize Objective Sword 0.0494 
E2.1.2C 2nd Bde will infiltrate, attack and seize Objective Sword 0.0394 
E2.1.3a Passages lanes are open for 25 AD attack 0 
E2.1.3b Seize Objective Sword to allow 25 AD fi-eedom of movement to PL Dime 0.0429 
E2.1.3c Help 25 AD to move unhindered by enemy direct and unobserved indirect fires fi-om PL 

Arkansas to PL Dune 0.0012 
E2.2a Create an assailable flank 0 
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E2.2b Destroy the enemy security zone.O 
E2.2c Destroy the security arms reserve 0 
E2.2e Clear the passage lanes to give 25th Armored Division freedom of movement from Phase 

Line Arkansas to Phase Line Dime. 0 
E2.2f Cover the passage of the 25th Armored Division at BENT. 0 
E2.3.1 6-502 Air Assault Infantry will conduct the infiltration. 0 
E2.3.2Atmght. 0 
E2.4a 6-502 will attack and seize Objective Meade to threaten the enemy's eastern flank 0.1502 
E2.4b Seizing Objective Meade will also protect 2nd Brigade's eastern flank. 0.1222 
E2.4c Seize Objective Meade to facilitate the mounted attacks of the 4-25 and 4-81 0.1305 
[No Expectations satisfied] 

C: Lets discuss something more specific. [Say Threshold Not Met marker] 
C: What are the key tasks you must accomplish to succeed in your mission? [Ask subquestion 

with the lowest sub-threshold match Q2.2] 
U: Identify or create an assailable enemy flank; destroy the CAR; seize key terrain along PL 

Dime; destroy enemy forces along passage lanes. 

[Compare to the nested expectations] 
E2.2a Create an assailable flank 0.509* [satisfied] 
E2.2b Destroy the enemy security zone. 0.055 
E2.2c Destroy the security arms reserve 0.425 
E2.2e Clear the passage lanes to give 25th Armored Division freedom of movement from Phase 
Line Arkansas to Phase Line Dime. 0.1288 
E2.2f Cover the passage of the 25th Armored Division at EENT. 0.0309 
[Question partially answered] 

C: Okay, [Say Acknowledgement marker] 
C: Can you add to that? [Say More marker] 
U: Those are the key tasks. 

[Compare to the nested expectations] 
E2.2a Create an assailable flank [satisfied] 
E2.2b Destroy the enemy security zone. 0.0231 
E2.2c Destroy the security arms reserve 0.0157 
E2.2e Clear the passage lanes to give 25th Armored Division freedom of movement from Phase 
Line Arkansas to Phase Line Dime. 0.0035 
E2.2f Cover the passage of the 25th Armored Division at EENT. 0.0015 
[Question not answered] 

C: What are the objectives of the infiltration? [Ask another subquestion Q2.4] 
U: Force the enemy to withdraw. 

[Compare to the nested expectations] 
E2.4a 6-502 will attack and seize Objective Meade to threaten the enemy's eastern flank 0.0083 
E2.4b Seizing Objective Meade will also protect 2nd Brigade's eastern flank. 0 
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E2.4c Seize Objective Meade to facilitate the mounted attacks of the 4-25 and 4-81  0.0063 
[Question not answered] 

C: What is your mission? [Ask another subquestion Q2.1] 
U: Atk and seize obj sword to allow 25AD to move xmhindered by enemy fires from PL 

Arkansas to PL Dime. 

[Compare to the nested expectations] 
E2.1.1 The crossing sites over Stranger Creek). 0 
E2.1.2a To infiltrate the security zone, attack and seize Objective Sword. 0.1201 
E2.1.2b Conduct an infiltration and attack to seize Objective Sword 0.1387 
E2.1.2C 2nd Bde will infiltrate, attack and seize Objective Sword. 0.1184 
E2.1.3a Passages lanes are open for 25 AD attack 0 
E2.1.3b Seize Objective Sword to allow 25AD freedom of movement to PL Dime 0.3424 
E2.1.3c Help 25 AD to move imhindered by enemy direct and unobserved indirect fires from PL 

Arkansas to PL Dime 0.5678*[satisfied] 
[Question partially answered; subquestion Q2.1.3 answered] 

C: Okay, [Say Acknowledgement marker] 
C: Anything else? [Say More marker] 
U: We will commence NLT210530may. 

[Compare to the remaining nested expectations] 
E2.1.1 The crossing sites over Stranger Creek). 0 
E2.1.2a To infiltrate the security zone, attack and seize Objective Sword. 0 
E2.1.2b Conduct an infiltration and attack to seize Objective Sword 0 
E2.1.2C 2nd Bde will mfiltrate, attack and seize Objective Sw^ord. 0.0069 
E2.1.3a Passages lanes are open for 25 AD attack 0 
E2.1.3b Seize Objective Sword to allow 25AD fireedom of movement to PL Dime 0 
E2.1.3c Help 25 AD to move unhindered by enemy direct and unobserved indirect fires fi-om PL 

Arkansas to PL Dime [satisfied] 
[Question partially answered; subquestion Q2.1.3 answered] 

C: Lets discuss something more specific. [Say Threshold Not Met marker] 
C: What is your objective? [Ask subquestion Q2.1.1] 
U: Obj sword. 

[Compare to the nested expectations] 
E E2.1.1 The crossing sites over Stranger Creek 0 
[Question not answered] 

C: What is your planned scheme of maneuver? [Ask another subquestion Q2.1.2] 
U: Lead with a mech tf; then follow on with a mech and armor tf; w/ a mech tf in reserve. 

[Compare to the nested expectations] 
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E2.1.2a To infiltrate the security zone, attack and seize Objective Sword. 0.0015 
E2.1.2b Conduct an infiltration and attack to seize Objective Sword. 0.0017 
E2.1.2c 2nd Bde will infiltrate, attack and seize Objective Sword. 0.0014 
[Question not answered] 

C: How is the infiltration being conducted? [Ask another subquestion Q2.3] 
U: The lead TF will conduct an air assault to establish contact with the main body following on. 

[Compare to the nested expectations] 
E2.3.1 6-502 Air Assault hifantry will conduct the infiltration. 0.1749 
E2.3.2 At night. 0 
[Question not answered] 

C: Lets discuss something more specific. [Say Threshold Not Met marker] 
C: Who is conducting the infiltration? [Ask another subquestion Q2.3.1] 
U: TF 6-502. 

[Compare to the nested expectations] 
E2.3.1 6-502 Air Assault Infantry will conduct the infiltration. 0 
[Question not answered] 

C: When will the infiltration occur? [Ask another subquestion Q2.3.2] 
U: 6-502 will LD at 202100may. 

[Compare to the nested expectations] 
E2.3.2 At night. 0.0312 
[Question not answered] 
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